[1] Stevens, P.R. and Walker, T.W. (1970) The chronosequence concept and soil formation. The Quarterly Review of Biology, 45, 333-350. doi:10.1086/406646
[2] Kennedy, M.J., Chadwick, O.A., Vitousek, P.M., Derry, L.A. and Hendricks D.M. (1998) Changing sources of base cations during ecosystem development, Hawaiian Islands. Geology, 26, 1015-1018. doi:10.1130/0091-7613(1998)026<1015:CSOBCD>2.3.CO;2
[3] Chadwick, O.A., Derry, L.A., Vitousek, P.M., Huebert, B.M. and Hedin, L.O. (1999) Changing sources of nutrients during four million years of ecosystem development. Nature, 397, 491-497. doi:10.1038/17276
[4] Chadwick, O.A., Gavenda, R.T., Kelly, E.F., Ziegler, K., Olson, C.G., Elliott, W.C. and Hendricks, D.M. (2003) The impact of climate on the biogeochemical functioning of volcanic soils. Chemical Geology, 202, 195-223. doi:10.1016/j.chemgeo.2002.09.001
[5] Kurtz, A.C., Derry, L.A., Chadwick, O.A. and Alfano, M.J. (2000) Refractory element mobility in volcanic soils. Geology, 28, 683-686. doi:10.1130/0091-7613(2000)28<683:REMIVS>2.0.CO;2
[6] Derry, L.A., Kurtz, A.C., Ziegler, K. and Chadwick, O.A. (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature, 433, 728-731. doi:10.1038/nature03299
[7] Huang, C.M. and Gong, Z.T. (2000) Magnetic characteristics during process of tropical soil development. Marine Geology & Quaternary Geology, 20, 63-68.
[8] Huang, C.M., Gong Z.T. and Yang, D.Y. (2001) Comparison of clay minerals in soils derived from basalt materials in northern Hainan island. Southwest China Journal of Agricultural Sciences, 14.
[9] Huang, C.M., Gong, Z.T. and Yang, D.Y. (2002) Genesis of soils derived from basalt in northern Hainan Island. II. Iron oxides. Acta Pedologica Sinica, 39, 449-457.
[10] Zhang, G.L., Pan, J.H., Huang, C.M. and Gong, Z.T. (2007) Geochemical features of a soil chronosequence developed on basalt in Hainan Island, China. Revista Mexicana de Ciencias Geológicas, 24, 261-269.
[11] Maher, B.A. (1986) Characterization of soils by mineral magnetic measurements. Physics of the Earth and Pla- netary Interiors, 42, 76-92. doi:10.1016/S0031-9201(86)80010-3
[12] Resende, M., Santana, D.P., Franzmeier, D.P. and Coey, J.M.D. (1986) Magnetic properties of Brazilian Oxisols. Proceedings of the International Soil Classification Workshop, EMBRAPA, Rio de Janeiro, 78-108.
[13] Resende, M., Santana, D.P. and Rezende, S.B. (1988) Susceptibilidade magnetica em Latossolos do Sudeste e Sul do Brasil. In: Camargo, M.C., Ed., Proceedings of III Soil Correlation and Classification Meeting, EMBRAPA, Rio de Janeiro, 233-258.
[14] Fontes, M.P.F., De Oliveira, T.S., Da Costa, L.M. and Campos, A.A.G. (2000) Magnetic separation and valuation of magnetization of Brazilian soils from different parent materials. Geoderma, 96, 81-99. doi:10.1016/S0016-7061(00)00005-7
[15] Cooperative Research Group on Chinese Soil Taxonomy (CRGCST) (2001) Chinese soil taxonomy. Science Press, Beijing, 246-247.
[16] Huang, Z.G., Zhang, W.Q. and Chen, H.J. (1999) Red soils in China and the shift of its border. Journal of Geographical Science, 54, 193-205.
[17] Ge, T.M., Chen, W.J., Xu, X., Lee, D.M., Fan, L.M., Lee, Q., Wen, S.Y. and Wang, X. (1989) The geomagnetic polarity time scale of Quaternary for Leiqiong area. K-Ar dating and palaeomagnetic evidence from volcanic rocks. Acta Geophysica Sinica, 32, 550-557.
[18] Zhu, B.Q. and Wang, H.F. (1989) Nd-Sr-Pb isotopic and chemical evidence for the volcanism with MORB-OIB source characteristics in the Leiqiong area, China. Geochimica, 3, 193-201.
[19] Ho, K.S., Chen, J.C. and Juang, W.S. (2000) Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, southern China. Journal of Asian Earth Sciences, 18, 307-324. doi:10.1016/S1367-9120(99)00059-0
[20] Rabenhorst, M.C. (1997) The chrono-continuum: An approach to modeling pedogenesis in marsh soils along transgressive coastlines. Soil Science, 162, 2-9. doi:10.1097/00010694-199701000-00002
[21] Torrent, J., Schwertmann, U. and Schulze, D.G. (1980) Iron oxide mineralogy of some soils of two river terrace sequences in Spain. Geoderma, 23, 191-208. doi:10.1016/0016-7061(80)90002-6
[22] Schwertmann, U. (1985) The effect of pedogenic environments on iron oxide minerals. Advances in Soil Science, 1, 171-200. doi:10.1007/978-1-4612-5046-3_5
[23] Pai, C.W., Wang, M.K., Zhuang, S.Y. and King, H.B. (2004) Free and noncrystalline Fe-oxides to total iron concentration ratios correlated with 14C ages of three forest soils in central Taiwan. Soil Science, 169, 582-589. doi:10.1097/01.ss.0000138419.22546.00
[24] Tsai, H., Huang, W.S., Hseu, Z.Y. and Chen, Z.S. (2006) A river terrace soil chronosequence of the Pakua Tableland in central Taiwan. Soil Science, 171, 167-179. doi:10.1097/01.ss.0000187376.76767.21
[25] Lu, S.G., Xue, Q.F., Zhu, L. and Yu, J.Y. (2008) Mineral magnetic properties of a weathering sequence of soils derived from basalt in Eastern China. Catena, 73, 23-33. doi:10.1016/j.catena.2007.08.004
[26] Chinese Society of Soil Science (CSSS). (1984) Standard methods of soil and agriochemistry. Science Press, Beijing.
[27] Mehra, O.P. and Jackson, M.L. (1960) Iron oxide removal from soils and clay by a dithionite-citrate system buffered with sodium bicarbonate. Clay and Clay Mineral, 7, 317-327. doi:10.1346/CCMN.1958.0070122
[28] Maher, B.A. (1988) Formation of ultrafine-grained magnetite in soil. Nature, 336, 368-370. doi:10.1038/336368a0
[29] Dearing, J. (1999) Environmental magnetic susceptibility: Using the bartington MS2 system. Chi Publishing, Keniloworth.
[30] Fine, P., Singer, M.J. and Verosub, K.L. (1992) Use of magnetic susceptibility measurements in assessing soil uniformity in chronosequences studies. Soil Science Society of America Journal, 56, 1195-1199. doi:10.2136/sssaj1992.03615995005600040032x
[31] Singer, M.J., Fine, P., Verosub, K.L. and Chadwick, O.A. (1992) Time dependence of magnetic susceptibility of soil chronosequences on the California coast. Quaternary Research, 37, 332-336. doi:10.1016/0033-5894(92)90070-Y
[32] Torrent, J., Barrón, V. and Liu, Q.S. (2006) Magnetic enhancement is linked to and precedes hematite formation in aerobic soil. Geophysical Research Letter, 33, L02401. doi:10.1029/2005GL024818
[33] Torrent, J., Liu, Q.S., Bloemendal, J. and Barrón, V. (2007) Magnetic enhancement and iron oxides in the Upper Luochuan loess-paleosol sequence, Chinese Loess Plateau. Soil Science Society of America Journal, 71, 1570-1578. doi:10.2136/sssaj2006.0328
[34] Torrent, J., Liu, Q.S. and Barrón, V. (2009) Magnetic minerals in Calcic Luvisols (Chromic) developed in a warm Mediterranean region of Spain: Origin and paleoenvironmental significance. Geoderma.
[35] Fine, P. and Singer, M.J. (1989) Contribution of ferrimagnetic minerals to oxalate-and dithionite-extractable iron. Soil Science Society of America Journal, 53, 191-196. doi:10.2136/sssaj1989.03615995005300010035x
[36] Singer, M.J., Bowen, L.H., Verosub, K.L., Fine, P. and TenPas, J. (1995) M?ssbauer spectroscopic evidence for citrate-bicarbonate-dithionite extraction of maghemite from soils. Clays and Clay Minerals, 43, 1-7. doi:10.1346/CCMN.1995.0430101
[37] Reyes, I. and Torrent, J. (1997) Citrate-ascorbate as a highly selective extractant for poorly crystalline iron oxides. Soil Science Society of America Journal, 61, 1647-1654. doi:10.2136/sssaj1997.03615995006100060015x
[38] Martin, M.A. and Montero, E. (2002) Laser diffraction and multifractal analysis for the characterization of dry soil volume-size distributions. Soil & Tillage Research, 64, 113-123. doi:10.1016/S0167-1987(01)00249-5
[39] Linda, P., Marco, B. and Paola, R.P. (2006) Laser diffraction, transmission electron microscopy and image analysis to evaluate a bimodal Gaussian model for particle size distribution in soils. Geoderma, 135, 118-132. doi:10.1016/j.geoderma.2005.11.009
[40] Lu, S.G. (2000b) Magnetic properties of subtropical Ferrisols and its magnetic mineralogical study. Chinese Journal of Geophysics, 43, 498-504.