AS  Vol.2 No.4 , November 2011
Evolution and significance of soil magnetism of basalt-derived chronosequence soils in tropical southern China
Abstract: Soil samples were collected from eight basalt- derived chronosequence soils with the ages of 0.01, 0.58, 0.92, 1.33, 2.04, 3.04, 3.76 and 6.12 Ma respectively from Leizhou Peninsula and northern Hainan Island of tropical southern China. Magnetic parameters of magnetic susceptibility (MS), percentage of frequency-dependent magnetic susceptibility (FDS%), anhysteretic remanent magnetization (ARM), saturation isothermal remanent magnetization (SIRM), soft and hard isothermal remanent magnetization (IRMs and IRMh) of the collected samples were measured to study the evolution and the significance of the magnetism with soil age. The results show that the magnetic parameters changed fast from Primosols to Ferrosols (0.01 ~ 0.92 Ma) but slowly at Ferralosols stage (1.33 Ma~), it suggests a stable phase occurred for soil magnetism at Ferralosols, the existence of this phase could be supported by the little changes in the contents of clay, Fet and Fed. Obvious differences existed in the values of magnetic parameters between Ferralosols and other soil types (Primosols and Ferrosols), FDS%: Ferralosols > 10%, Primosols and Ferrosols < 10%; ARM, Ferralosols < 7000 × 10–8· SIm3·kg–1, Primosols and Ferrosols > 8000 × 10–8 SIm3·kg–1, thus, it is possible to differentiate Ferralosols from other soil types in tropical region by using magnetic indices.
Cite this paper: nullLi, D. , Yang, Y. , Guo, J. , Velde, B. , Zhang, G. , Hu, F. and Zhao, M. (2011) Evolution and significance of soil magnetism of basalt-derived chronosequence soils in tropical southern China. Agricultural Sciences, 2, 536-543. doi: 10.4236/as.2011.24070.

[1]   Stevens, P.R. and Walker, T.W. (1970) The chronosequence concept and soil formation. The Quarterly Review of Biology, 45, 333-350. doi:10.1086/406646

[2]   Kennedy, M.J., Chadwick, O.A., Vitousek, P.M., Derry, L.A. and Hendricks D.M. (1998) Changing sources of base cations during ecosystem development, Hawaiian Islands. Geology, 26, 1015-1018. doi:10.1130/0091-7613(1998)026<1015:CSOBCD>2.3.CO;2

[3]   Chadwick, O.A., Derry, L.A., Vitousek, P.M., Huebert, B.M. and Hedin, L.O. (1999) Changing sources of nutrients during four million years of ecosystem development. Nature, 397, 491-497. doi:10.1038/17276

[4]   Chadwick, O.A., Gavenda, R.T., Kelly, E.F., Ziegler, K., Olson, C.G., Elliott, W.C. and Hendricks, D.M. (2003) The impact of climate on the biogeochemical functioning of volcanic soils. Chemical Geology, 202, 195-223. doi:10.1016/j.chemgeo.2002.09.001

[5]   Kurtz, A.C., Derry, L.A., Chadwick, O.A. and Alfano, M.J. (2000) Refractory element mobility in volcanic soils. Geology, 28, 683-686. doi:10.1130/0091-7613(2000)28<683:REMIVS>2.0.CO;2

[6]   Derry, L.A., Kurtz, A.C., Ziegler, K. and Chadwick, O.A. (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature, 433, 728-731. doi:10.1038/nature03299

[7]   Huang, C.M. and Gong, Z.T. (2000) Magnetic characteristics during process of tropical soil development. Marine Geology & Quaternary Geology, 20, 63-68.

[8]   Huang, C.M., Gong Z.T. and Yang, D.Y. (2001) Comparison of clay minerals in soils derived from basalt materials in northern Hainan island. Southwest China Journal of Agricultural Sciences, 14.

[9]   Huang, C.M., Gong, Z.T. and Yang, D.Y. (2002) Genesis of soils derived from basalt in northern Hainan Island. II. Iron oxides. Acta Pedologica Sinica, 39, 449-457.

[10]   Zhang, G.L., Pan, J.H., Huang, C.M. and Gong, Z.T. (2007) Geochemical features of a soil chronosequence developed on basalt in Hainan Island, China. Revista Mexicana de Ciencias Geológicas, 24, 261-269.

[11]   Maher, B.A. (1986) Characterization of soils by mineral magnetic measurements. Physics of the Earth and Pla- netary Interiors, 42, 76-92. doi:10.1016/S0031-9201(86)80010-3

[12]   Resende, M., Santana, D.P., Franzmeier, D.P. and Coey, J.M.D. (1986) Magnetic properties of Brazilian Oxisols. Proceedings of the International Soil Classification Workshop, EMBRAPA, Rio de Janeiro, 78-108.

[13]   Resende, M., Santana, D.P. and Rezende, S.B. (1988) Susceptibilidade magnetica em Latossolos do Sudeste e Sul do Brasil. In: Camargo, M.C., Ed., Proceedings of III Soil Correlation and Classification Meeting, EMBRAPA, Rio de Janeiro, 233-258.

[14]   Fontes, M.P.F., De Oliveira, T.S., Da Costa, L.M. and Campos, A.A.G. (2000) Magnetic separation and valuation of magnetization of Brazilian soils from different parent materials. Geoderma, 96, 81-99. doi:10.1016/S0016-7061(00)00005-7

[15]   Cooperative Research Group on Chinese Soil Taxonomy (CRGCST) (2001) Chinese soil taxonomy. Science Press, Beijing, 246-247.

[16]   Huang, Z.G., Zhang, W.Q. and Chen, H.J. (1999) Red soils in China and the shift of its border. Journal of Geographical Science, 54, 193-205.

[17]   Ge, T.M., Chen, W.J., Xu, X., Lee, D.M., Fan, L.M., Lee, Q., Wen, S.Y. and Wang, X. (1989) The geomagnetic polarity time scale of Quaternary for Leiqiong area. K-Ar dating and palaeomagnetic evidence from volcanic rocks. Acta Geophysica Sinica, 32, 550-557.

[18]   Zhu, B.Q. and Wang, H.F. (1989) Nd-Sr-Pb isotopic and chemical evidence for the volcanism with MORB-OIB source characteristics in the Leiqiong area, China. Geochimica, 3, 193-201.

[19]   Ho, K.S., Chen, J.C. and Juang, W.S. (2000) Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, southern China. Journal of Asian Earth Sciences, 18, 307-324. doi:10.1016/S1367-9120(99)00059-0

[20]   Rabenhorst, M.C. (1997) The chrono-continuum: An approach to modeling pedogenesis in marsh soils along transgressive coastlines. Soil Science, 162, 2-9. doi:10.1097/00010694-199701000-00002

[21]   Torrent, J., Schwertmann, U. and Schulze, D.G. (1980) Iron oxide mineralogy of some soils of two river terrace sequences in Spain. Geoderma, 23, 191-208. doi:10.1016/0016-7061(80)90002-6

[22]   Schwertmann, U. (1985) The effect of pedogenic environments on iron oxide minerals. Advances in Soil Science, 1, 171-200. doi:10.1007/978-1-4612-5046-3_5

[23]   Pai, C.W., Wang, M.K., Zhuang, S.Y. and King, H.B. (2004) Free and noncrystalline Fe-oxides to total iron concentration ratios correlated with 14C ages of three forest soils in central Taiwan. Soil Science, 169, 582-589. doi:10.1097/

[24]   Tsai, H., Huang, W.S., Hseu, Z.Y. and Chen, Z.S. (2006) A river terrace soil chronosequence of the Pakua Tableland in central Taiwan. Soil Science, 171, 167-179. doi:10.1097/

[25]   Lu, S.G., Xue, Q.F., Zhu, L. and Yu, J.Y. (2008) Mineral magnetic properties of a weathering sequence of soils derived from basalt in Eastern China. Catena, 73, 23-33. doi:10.1016/j.catena.2007.08.004

[26]   Chinese Society of Soil Science (CSSS). (1984) Standard methods of soil and agriochemistry. Science Press, Beijing.

[27]   Mehra, O.P. and Jackson, M.L. (1960) Iron oxide removal from soils and clay by a dithionite-citrate system buffered with sodium bicarbonate. Clay and Clay Mineral, 7, 317-327. doi:10.1346/CCMN.1958.0070122

[28]   Maher, B.A. (1988) Formation of ultrafine-grained magnetite in soil. Nature, 336, 368-370. doi:10.1038/336368a0

[29]   Dearing, J. (1999) Environmental magnetic susceptibility: Using the bartington MS2 system. Chi Publishing, Keniloworth.

[30]   Fine, P., Singer, M.J. and Verosub, K.L. (1992) Use of magnetic susceptibility measurements in assessing soil uniformity in chronosequences studies. Soil Science Society of America Journal, 56, 1195-1199. doi:10.2136/sssaj1992.03615995005600040032x

[31]   Singer, M.J., Fine, P., Verosub, K.L. and Chadwick, O.A. (1992) Time dependence of magnetic susceptibility of soil chronosequences on the California coast. Quaternary Research, 37, 332-336. doi:10.1016/0033-5894(92)90070-Y

[32]   Torrent, J., Barrón, V. and Liu, Q.S. (2006) Magnetic enhancement is linked to and precedes hematite formation in aerobic soil. Geophysical Research Letter, 33, L02401. doi:10.1029/2005GL024818

[33]   Torrent, J., Liu, Q.S., Bloemendal, J. and Barrón, V. (2007) Magnetic enhancement and iron oxides in the Upper Luochuan loess-paleosol sequence, Chinese Loess Plateau. Soil Science Society of America Journal, 71, 1570-1578. doi:10.2136/sssaj2006.0328

[34]   Torrent, J., Liu, Q.S. and Barrón, V. (2009) Magnetic minerals in Calcic Luvisols (Chromic) developed in a warm Mediterranean region of Spain: Origin and paleoenvironmental significance. Geoderma.

[35]   Fine, P. and Singer, M.J. (1989) Contribution of ferrimagnetic minerals to oxalate-and dithionite-extractable iron. Soil Science Society of America Journal, 53, 191-196. doi:10.2136/sssaj1989.03615995005300010035x

[36]   Singer, M.J., Bowen, L.H., Verosub, K.L., Fine, P. and TenPas, J. (1995) M?ssbauer spectroscopic evidence for citrate-bicarbonate-dithionite extraction of maghemite from soils. Clays and Clay Minerals, 43, 1-7. doi:10.1346/CCMN.1995.0430101

[37]   Reyes, I. and Torrent, J. (1997) Citrate-ascorbate as a highly selective extractant for poorly crystalline iron oxides. Soil Science Society of America Journal, 61, 1647-1654. doi:10.2136/sssaj1997.03615995006100060015x

[38]   Martin, M.A. and Montero, E. (2002) Laser diffraction and multifractal analysis for the characterization of dry soil volume-size distributions. Soil & Tillage Research, 64, 113-123. doi:10.1016/S0167-1987(01)00249-5

[39]   Linda, P., Marco, B. and Paola, R.P. (2006) Laser diffraction, transmission electron microscopy and image analysis to evaluate a bimodal Gaussian model for particle size distribution in soils. Geoderma, 135, 118-132. doi:10.1016/j.geoderma.2005.11.009

[40]   Lu, S.G. (2000b) Magnetic properties of subtropical Ferrisols and its magnetic mineralogical study. Chinese Journal of Geophysics, 43, 498-504.