Back
 AS  Vol.2 No.4 , November 2011
Changes of phenolic compounds in Carignan merithallus (Vitis vinifera L.) during bud dormancy and end of dormancy phase: correlation with rhizogenesis
Abstract: The aim of the present study is to address the type of correlation that may exist between phenolic compounds and vine rhizogenetic potential by analyzing some phenolic compounds in the Carignan merithallus. Phenolic compounds were analyzed by HPLC in the young shoots (or merithallus) of Carignan vine (Vitis vinifera L.) and we established a correlation between the studied compounds and the rhizogenetic potential of shoots during the phases of bud dormancy and end of dormancy, taking into account the position effect on shoots. This work was carried out for the first time on this type of vine. Among the studied phenolic compounds, we observed a negative correlation between coumarin and rhizogenetic potential of Carignan vine. In contrast, positive correlations were found with naringin and syringic acid. Obtained results confirmed the fact that the action of phenolic compounds is complex and might be qualified as cofactors that interact with auxin on rhizogenesis.
Cite this paper: nullZohra, K. , Asma, Z. , Kamel, M. , Helmi, H. and Béchir, E. (2011) Changes of phenolic compounds in Carignan merithallus (Vitis vinifera L.) during bud dormancy and end of dormancy phase: correlation with rhizogenesis. Agricultural Sciences, 2, 498-504. doi: 10.4236/as.2011.24064.
References

[1]   Ho, C.T., Lee, C.Y. and Houng, M.T. (1992) Phenolic compounds in food and their effects on health. I. Analysis, Occurrence, and Chemistry. ACS Symposium Series, 506.

[2]   Oleszek, W., Amiot, M.J. and Aubert, S.Y. (1994) Identification of some phenolics in pear fruit. Journal of Agricultural and Food Chemistry, 42, 1261-1265. doi:10.1021/jf00042a002

[3]   Amiot, M.J., Aubert, S. and Nicolas, J. (1993). Phenolic composition and browning susceptibility of various apple and pear cultivars at maturity and postharvest. Acta Horticultureae, 343, 67-69.

[4]   Blankenship, S.M. and Richardson, D.G. (1985). Changes in phenolic acids and external ethylene during long-term cold storage of pears. Journal of American Society of Horticulturea Science, 110, 336-339.

[5]   Challice, J.C. and A.H. Williams, (1968). Phenolic compounds of genus Pyrus-II. A chemotaxonomic survey. Phytochemistry, 7, 1781. doi:10.1016/S0031-9422(00)86651-0

[6]   Challice, J.C. and Williams, A.H. (1972). Phenolic compounds of genus Pyrus. Phytochemistry, 11, 37-44. doi:10.1016/S0031-9422(00)89964-1

[7]   Risch, B. and Hermann, K. (1989). Contents of hydroxycinnamic acid derivates and catechins in pome and stone fruits. Zeitschrift Fuer Lebensmittel-Untersuchung Und -forschung, 186, 225-230. doi:10.1007/BF01043317

[8]   Ayaz, F.A., Kadioglu, A. and Reunanen, M. (1997). Changes in phenolic acid contents of Diospyros lotus L. during fruit development. Journal of Agricultural and Food Chemistry, 45, 2539-2541. doi:10.1021/jf960741c

[9]   Babic, I., Amiot, M.J., Nguyen-The, C. and Aubert, S. (1993). Changes in phenolic content in fresh readyto-use shredded carrots during storage. Journal of Food Science, 58, 351-356. doi:10.1111/j.1365-2621.1993.tb04273.x

[10]   Nortje, B.K. and Koeppen, B.H. (1965).The flavanol glycosides in the fruit of Prunus communis L. cultivar Bon Chrestien. Biochemistry Journal, 95, 209-211.

[11]   Manach, C., Scalbert, A., Morand, C., Rémésy, C. and Jiménez, L. (2004) Polyphenols: Food sources and bioa- vailability. American Journal of Clinical Nutrition, 79, 727-747.

[12]   Balasundram, N., Sundram, K. and Samman, S. (2007). Phenolic compounds in plants and agri-industrial by products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99, 191-203. doi:10.1016/j.foodchem.2005.07.042

[13]   Peer, W.A, Brown, D.E., Tague, B.W., Muday, G.K. and Murpky, A.S. (2001) Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. Plant Physiology, 126, 536-548. doi:10.1104/pp.126.2.536

[14]   HESS, C.E. (1962) A physiological analysis of root initiation in easy and difficult to root cuttings. 16th International Horticutureae Congress, 4, 375-381.

[15]   Bachelard, E.P. and Stowe, B. (1963). Rooting of cuttings of Acer rubrum L. and eucalyptus camaldulensis Delh. Australian Journal of Biological Science, 16, 751-767.

[16]   Arnold, A.W. and Albert, L.S. (1964). Chemical factors affecting anthocyanin formation and morphogenesis in cultured hypocotyl segments of impatiens balsamina. Plant Physiology, 39, 307-312. doi:10.1104/pp.39.3.307

[17]   Stafford, H.A. (1968). Relationships between the development of adventitous roots and biosynthesis of anthocyanins in first internodes of Sorghum. Plant Physiology, 43, 318-326. doi:10.1104/pp.43.3.318

[18]   Tomaszewski, M. (1964). The mecanism of synergistic effects between auxin and some natural phenolic substances. Colloque International C.N.R.S., 123, 335-351.

[19]   Bachelard, E.P. (1965).The interrelations between root formation and anthocyanin synthesis in red maple cutting: Effects of gibberelic acid, CCC and 8 azaguanine. Australian Journal of Biological Science, 18, 699-702.

[20]   Fernqvist, I. (1966). Studies on factors in adventitious root formation. Lantbruskshgskol Annals, 32, 109-244 .

[21]   Paupardin, C. (1969). Sur le moment d’action de l’acide caféique dans la rhizogenèse de fragments de tubercules de Tapinambour cultivé in vitro. Comptes. Rendues de l’Académie des Sciences, Paris, 269, 1532-1534 .

[22]   Kraeim, Z., Bouzazi, R. and Ezzili, B. (2006) Influence of collection date on rhyzogenetic potentiality of Muscat d’Italy (Vitis vinifera L.) cultivated on sandy substrate. Arid Zones Workshop Communications, December 2006, Djerba Tunisia.

[23]   Ezzili, B. (2001) Essai de régulation du fonctionnement du méristème terminal, de la dormance des bourgeons et de l’initiation florale de Vitis vinifera L. Thèse de doctorat d’état, Faculté Des Sciences, Université Tunis El Manar, 187.

[24]   Friml, J. and Murphy, A.S. (2006) Nomenclature for apical/basal polarity in plants. In: Taiz, L. and Zeiger, E., Eds., Plant Physiology, 4th Edition, Web Essay, Sinauer Associates, Sunderland.

[25]   Dewanto, V., Wu, X., Adom, K.K and Liu, R.H. (2002) Thermal processing enhaces the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50, 3010-3014. doi:10.1021/jf0115589

[26]   Mau, J.L., Chao, G.R. and Wu, K.T(2001). Antioxidant properties of methanolic extracts from several ear mushrooms. Journal of Agricultural and Food Chemistry, 49, 5461-5467. doi:10.1021/jf010637h

[27]   Statsoft, (1998). STATISTICA for Windows (Computer program electronic manual). StatSoft Inc, Tulsa.

[28]   Kraiem, Z., Aidi, W., Zairi, A. and Ezzili, B. (2010) Effect of cutting date and position on rooting ability and fatty acid composition of Carignan (Vitis vinifera L.) shoot. Scientia Horticulturae, 125, 146-150. doi:10.1016/j.scienta.2010.03.008

[29]   Brunn, S.A., Munday, G.K. and Haworth, P. (1992) Auxin transport and the interraction of phytotropins. Plant Phyisiology, 98, 101-107. doi:10.1104/pp.98.1.101

[30]   Mylona, P., Moerman, M., Yang, W.C., Gloudemans, T., Van De Kerckhove, J.A., Van Kammen, A., Bisseling, T. and Franssen, H.J. (1994) The root epidermis specific pea gene RH2 is homologous to a pathogenesis-related gene. Plant Molecular Biology, 26, 39-50. doi:10.1007/BF00039518

[31]   Insight (2002) An emerging model of auxin transport regulation. The Plant Cell, 14, 293-299.

[32]   Brinker, M., Brinker, L. Van Zyl, W., Liu, D. and Craig, R.R. (2004). Microarray analyses of gene expression during adventitious root development in Pinus contorta. Plant Physiology, 135, 1526-1539. doi:10.1104/pp.103.032235

[33]   Darne, G. and Atalay, D. (1977). Relationship between the synthesis of phenolic compounds and fatty acids in vine cuttings, and rooting ability. Connaissance de la Vigne et du Vin, 11, 287-293.

 
 
Top