ME  Vol.2 No.5 , November 2011
Credit Risk and Macroeconomic Interactions: Empirical Evidence from the Brazilian Banking System
ABSTRACT
In Brazil, the credit is characterized by excessive cost and limited supply and the main reason is the high default risk embedded in the spread. This paper concludes that the level of economic activity and the basic interest rate are factors with great influence on the default risk. Additionally, the paper also analyzes the reaction of the financial sector to structural risks, suggesting a new approach to credit risk. The assumption that credit risk is the result of an interactive process between banks and the economic environment is confirmed for the period from 2000 to 2006 in Brazil. The results also point to differences in the behavior of private and public banks.

Cite this paper
nullG. Souza and C. Feijó, "Credit Risk and Macroeconomic Interactions: Empirical Evidence from the Brazilian Banking System," Modern Economy, Vol. 2 No. 5, 2011, pp. 910-929. doi: 10.4236/me.2011.25102.
References
[1]   Banco Central do Brasil, “Juros e Spread Bancário no Brasil,” 1999. http://www.bcb.gov.br/ftp/juros-spread1.pdf

[2]   Banco Central do Brasil, “Relatório de Economia Bancá- ria e Crédito: Avalia??o de 1 ano do Projeto Juros e Spread Bancário,” 2000. http://www.bcb.gov.br/ftp/jurospread 112000. pdf

[3]   Banco Central do Brasil, “Relatório de Economia Bancá- ria e Crédito: Avalia??o de 2 anos do Projeto Juros e Spread Bancário,” 2001. http://www.bcb.gov.br/ftp/jurospread112001.pdf

[4]   Banco Central do Brasil, “Relatório de Economia Bancá- ria e Crédito: Avalia??o de 3 anos do Projeto Juros e Spread Bancário,” 2002. http://www.bcb.gov.br/ftp/jurospread122002.pdf

[5]   Banco Central do Brasil, “Relatório de Economia Bancá- ria e Crédito: Avalia??o de 4 anos do Projeto Juros e Spread Bancário,” 2003. http://www.bcb.gov.br/ftp/rel_econmia_bancaria_credito.pdf

[6]   Banco Central do Brasil, “Relatório de Economia Bancá- ria e Crédito: Avalia??o de 5 anos do Projeto Juros e Spread Bancário,” 2004. http://www.bcb.gov.br/Pec/spread/port/economia_bancaria_e_credito.pdf

[7]   Banco Central do Brasil, “Relatório de Economia Bancá- ria e Crédito. Brasília,” 2005. http://www.bcb.gov.br/pec/spread/port/rel_econ_ban_cred.pdf

[8]   Banco Central do Brasil, “Relatório de Economia Bancá- ria e Crédito,” 2006. http://www.bcb.gov.br/Pec/spread/port/relatorio_economia_bancaria_credito.pdf

[9]   M. H. Pesaran, T. Schuermann, B. J. Treutler and S. M. Weiner, “Macroeconomic Dynamics and Credit Risk: A Global Perspective,” Journal of Money, Credit and Ban- king, Vol. 38, No. 5, 2006, pp. 1211-1261.

[10]   A. Cunningham, “Rating Methodology: Bank Credit Risk in Emerging Markets—An Analytical Framework,” 1999. http://rating.interfax.ru/data/rating/emerging%20banks%20methodology.pdf

[11]   U. S. Census Bureau, “X-12-ARIMA: Reference Manual Version 0.3,” 2007. http://www.census.gov/srd/www/x12 a

[12]   D. Kwiatkowski, P. C. B. Phillips, P. Schmidt and Y. Shin, “Testing the Null Hypothesis of Stationary against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a Unit Root?,” Journal of Econometrics, Vol. 54, No. 1-3, 1992, pp. 159-178.

[13]   G. S. Maddala, “Introduction to Econometrics,” 3rd Edi- tion, John Wiley & Sons Ltd., Chichester, 2001.

[14]   H. Lütkepohl, “New Introduction to Multiple Time Series Analysis,” Springer, Berlin, 2005.

[15]   W. H. Greene, “Econometric Analysis,” 4th Edition, Prentice-Hall, Upper Saddle River, 2000.

[16]   S. Johansen, “Statistical Analysis of Cointegration Vec- tors,” Journal of Economic Dynamics and Control, Vol. 12, No. 2-3, 1988, pp. 231-54. doi:10.1016/ 0165-1889(88)90041-3

[17]   S. Johansen, “Estimation and Hypothesis Testing of Cointegrating Vectors in Gaussian Vector Autoregressive Models,” Econometrica, Vol. 59, No.6, 1991, pp. 1551- 1580. doi:10.2307/2938278

[18]   S. G. Hall, “The Effect of Varying Length VAR Models on the Maximum Likelihood Estimates of Cointegrating Vectors,” Scottish Journal of Political Economy, Vol. 38, No. 4, 1991, pp. 317-323. doi:10.1111/j. 1467-9485.1991.tb00320.x

[19]   D. F. Hendry and K. Juselius, “Explaining Cointegration Analysis: Part I,” Energy Journal, Vol. 21, No.1, 2000, pp. 1-42. doi:10.5547/ISSN0195-6574-EJ-Vol21-No1-1

[20]   D. F. Hendry and K. Juselius, “Explaining Cointegration Analysis: Part II,” Energy Journal, Vol. 22, No. 1, 2001, pp. 75-120. doi:10.5547/ISSN0195-6574-EJ-Vol22-No1-4

[21]   R. I. D. Harris, “Using Cointegration Analysis in Econo- metric Modelling,” 1st Edition, Prentice-Hall, London, 1995.

[22]   W. Enders, “Applied Econometric Time Series,” 2nd Edi- tion, John Wiley & Sons Ltd., New York, 2003.

[23]   W. Charemza and D. F. Deadman, “New Directions in Econometric Practice: General to Specific Modelling, Cointegration and Vector Autoregression,” 2nd Edition, Edward Elgar, London, 1997.

[24]   M. H. Pesaran and Y. Shin, “Generalized Impulse Response Analysis in Linear Multivariate Models,” Economics Letters, Vol. 58, No. 1, 1998, pp. 17-29. doi: 10.1016/S0165-1765(97)00214-0

[25]   H. F. de Mendon?a and G. J. de Guimar?es e Souza, “In- flation Targeting Credibility and Reputation: The Cones- quences for the Interest Rate,” Economic Modelling, Vol. 26, No. 6, 2009, pp. 1228-1238. doi:10. 1016/j.econmod.2009.05.010

[26]   J. A. Ocampo, “Developing Countries’ Anti-Cyclical Poli- cies in a Globalized World,” Cepal, Santiago, 2002.

[27]   T. S. Afanasieff, P. M. Lhacer and M. I. Nakane, “The Determinants of Bank Interest Spread in Brazil,” Money Affairs, Vol. 15, No. 2, 2002, pp. 183-207.

[28]   F. J. C. Carvalho, “On Banks’ Liquidity Preference,” In: P. Davidson and J. Kregel., Eds., Full Employment and Price Stability in a Global Economy, 1st Edition, Edward Elgar Publishing, Cheltenham, 1999, pp. 123-138.

[29]   J. M. Keynes, “The General Theory of Employment, Interest and Money,” Macmillan Press, Cambridge, 1936.

 
 
Top