AS  Vol.9 No.8 , August 2018
Cloning and Expression Analysis of RrGT1 Gene Related to Anthocyanin Biosynthesis in Rosa rugosa
Abstract: Glycosylation modification fulfills an important role in increasing the stability and solubility of anthocyanin in plants. In this study, based on the transcriptional database of R. rugosa, a gene with full length cDNA of 1161 bp, encoding 386 amino acids, designated as RrGT1, was isolated from flowers of R. rugosa ‘Zizhi’ and then functionally characterized. According to online software prediction, the molecular formula of the protein encoded by the RrGT1 gene is C1879H2964N494O556S14, the relative molecular mass is 41,820.02 Da, and the theoretical isoelectric point is pI = 5.03. The result of the RrGT1 protein 3D model construction showed that it had the highest homology with the UDP-glucose: anthocyanidin 3-O-glucosyltransferase protein model in the database (47.01%). Sequence alignments with the NCBI database showed that the RrGT1 protein is a member of the GTB superfamily. Homology analysis revealed that the coding regions of RrGT1 was highly specific among different species, but still had typical conserved amino acid residues called PSPG that are crucial for RrGT1 enzyme activity. RrGT1 transcripts were detected in five flowering stages and seven tissues of R. rugosa ‘Zizhi’, R. rugosa ‘Fenzizhi’ and R. rugosa ‘Baizizhi’, and their expression patterns corresponded with the accumulation of anthocyanins. Therefore, we speculated that glycosylation of RrGT1 plays a crucial role in anthocyanin biosynthesis in R. rugosa.
Cite this paper: Sui, X. , Zhang, P. , Wang, Y. , Zhao, M. , Han, X. , Zhao, L. and Xu, Z. (2018) Cloning and Expression Analysis of RrGT1 Gene Related to Anthocyanin Biosynthesis in Rosa rugosa. Agricultural Sciences, 9, 1085-1096. doi: 10.4236/as.2018.98075.

[1]   Li, M. (2006) Survey and Quality Evaluation of Shandong Rose Varieties. Shandong University of Traditional Chinese Medicine, Jinan.

[2]   Feng, L.G., Shao, D.W., Sheng, L.X., et al. (2009) Study on Investigation and Morphological Variation of Wild Rosa rugosa in China. Journal of Shandong Agricultural University, 40, 484-488.

[3]   Chen, S.-M., Zhu, X.-R., Chen, F.D., et al. (2010) Expression Characteristics of Anthocyanin Structural Genes in Different Flower Color Chrysanthemum Cultivars. Journal of Northwest Plants, No. 3, 453-458.

[4]   Kim, S.H., Lee, J.R., Hong, S.T., et al. (2003) Molecular Cloning and Analysis of Anthocyanin Biosynthesis Genes Preferentially Expressed in Apple Skin. Plant Science, 165, 403-413.

[5]   Martens, S., Preuβ, A. and Matern, U. (2010) Multifunctional Flavonoid Dioxygenases: Flavonol and Anthocyanin Biosynthesis in Arabidopsis thaliana L. Phytochemistry, 71, 1040-1049.

[6]   Ge, C.L., Huang, C.H. and Xu, X.B. (2012) Research on Anthocyanins Biosynthesis in Fruit. Acta Horticulturae Sinica, 39, 1655-1664.

[7]   Forkmann, G. (1991) Flavonoids as Flower Pigments: The Formation of the Natural Spectrum and Its Extension by Genetic Engineering. Plant Breeding, 106, 1-26.

[8]   Springob, K., Nakajima, J.I., Yamazaki, M., et al. (2003) Recent Advances in the Biosynthesis and Accumutation of Anthocyanins. Natural Product Reports, 20, 288-303.

[9]   Yonekura-Sakakibara, K., Nakayama, T., Yamazaki, M., et al. (2009) Modification and Stabilization of Anthocyanins. Springer, New York, 169-190.

[10]   Zheng, Z.L. (1994) Flower Color Gene Engineering of Flower Crops. Northern Horticulture, 3, 37-38.

[11]   Vogt, T. and Jones, P. (2000) Glycosyltransferases in Plant Natural Product Synthesis: Characterization of a Supergene Family. Trends in Plant Science, 5, 380-386.

[12]   Tohge, T., Nishiyama, Y., Hirai, M.Y., et al. (2005) Functional Genomics by Integrated Analysis of Metabolome and Transcriptome of Arabidopsis Plants Over-Expressing an MYB Transcription Factor. The Plant Journal, 42, 218-235.

[13]   Goto, T., Kondo, T., Tamura, H., et al. (1982) Structure of Gentiodelphin, an Acylated Anthocyanin Isolated from Gentiana makinoi, That Is Stable in Dilute Aqueous Solution. Tetrahedron Letters, 23, 3695-3698.

[14]   Hall, D., Yuan, X.X., Murata, J., et al. (2012) Molecular Cloning and Biochemical Characterization of the UDP-Glucose: Flavonoid 3-0-Glucosyltransferase from Concord Grape (Vitis labrusca). Phytochemistry, 74, 90-99.

[15]   Tanaka, Y., Yoshikazu, K., Fukuchi-Mlizutani, M., et al. (1996) Molecular and Biochemical Characterization of Three Anthocyanin Synthetic Enzymes from Gentiana triflora. Plant and Cell Physiology, 37, 711-716.

[16]   Yamazaki, M., Yamagishi, E., Gong, Z.Z., et al. (2002) Two Flavonoid Glucosyltransferases from Petunia hybrida: Molecular Cloning, Biochemical Properties and Developmentally Regulated Expression. Plant Molecular Biology, 48, 401-411.

[17]   Schmittgen, T.D. and Livak, K.J. (2008) Analyzing Real-Time PCR Data by the Comparative C (T) Method. Nature Protocols, 3, 1101-1108.

[18]   Sawada, S., Suzuki, H., Ichimaida, F., et al. (2005) UDP-Glucuronic Acid: Anthocyanin Glucuronosyltransferase from Red Daisy (Bellis perennis) Flowers. The Journal of Biological Chemistry, 280, 899-906.

[19]   Gachon, C.M., Meurinne, M.L. and Saindrenan, P. (2005) Plant Secondary Metabolism Glycosyltransferases: The Emerging Functional Analysis. Trends in Plant Science, 10, 542-549.

[20]   Sakakibara, K.Y. and Hanada, K. (2011) An Evolutionary View of Functional Diversity in Family 1 Glycosyltransferases. The Plant Journal, 66, 182-193.

[21]   Wang, X.Q. (2009) Structure, Mechanism and Engineering of Plant Natural Product Glycosyltransferases. FEBS Letters, 583, 3303-3309.

[22]   Kubo, A., Arai, Y., Nagashima, S., et al. (2004) Alteration of Sugar Donor Specificities of Plant Glycosyltransferases by a Single Point Mutation. Archives of Biochemistry and Biophysics, 429, 198-203.

[23]   Shao, H., He, X.Z., Achnine, L., et al. (2005) Crystal Structures of a Multifunctional Triterpene/Flavonoid Glycosyltransferase from Medicago Truncatula. Plant Cell, 17, 3141-3154.

[24]   Li, L.N., Modolo, L.V., Trevino, L.E., et al. (2007) Crystal Structure of Medicago truncatula UGT85H2—Insights into the Trusctural Basis of a Multifunctional (Iso) Flavonoid Glycosyltransferase. Journal of Molecular Biology, 370, 951-963.

[25]   Modolo, L.V., Li, L.N., Pan, H.Y., et al. (2009) Crystal Structures of Glycosyltransferase UGT/8G1 Reveal the Molecular Basis for Glycosylation and Deglycosylation of (Iso) Flavonoids. Journal of Molecular Biology, 392, 1292-1302.

[26]   Boss, P.K., Davies, C. and Robinson, S.P. (1996) Expression of Anthocyanin Biosynthesis Pathway Genes in Red and White Grapes. Plant Molecular Biology, 32, 565-569.

[27]   Gong, Z.Z., Yamazaki, M., Sugiyama, M., et al. (1997) Cloning and Molecular Analysis of Structural Genes Involved in Anthocyanin Biosynthesis and Expressed in a Forma-Specific Manner in Perilla Frutescens. Plant Molecular Biology, 35, 915-927.