ME  Vol.2 No.5 , November 2011
Accurately Forecasting Model for the Stochastic Volatility Data in Tourism Demand
ABSTRACT
This study attempts to enhance the effectiveness of stochastic volatility data. This work presents an empirical case involving the forecasting of tourism demand to demonstrate the efficacy of the accuracy forecasting model. Work combining the grey forecasting model (GM) and Fourier residual modification model to refine the forecasting effectiveness for the stochastic volatility data, which can estimate fluctuations in historical time series. This study makes the following contributions: 1) combining the grey forecasting and Fourier residual modification models to refine the forecasting effectiveness for the stochastic volatility data, 2) providing an effective method for forecasting the number of international visitors to Taiwan, 3) improving the accuracy of short-term forecasting in cases involving sample data with significant fluctuations.

Cite this paper
nullY. Huang and Y. Lee, "Accurately Forecasting Model for the Stochastic Volatility Data in Tourism Demand," Modern Economy, Vol. 2 No. 5, 2011, pp. 823-829. doi: 10.4236/me.2011.25091.
References
[1]   L. ?kufli? and I. ?tokovi?, “Demand Function for Croa- tian Tourist Product: A Panel Data Approach,” Modern Economy, Vol. 2, 2011, pp. 49-53.

[2]   Z. S. Hua, B. Zhang, J. Yang and D. S. Tan, “A New Approach of Forecasting Intermittent Demand for Spare Parts Inventories in the Process Industries,” Journal of the Operational Research Society, Vol. 58, No. 1, 2007, pp. 52-61. doi:10.1057/palgrave.jors.2602119

[3]   D. J. Pedregal and P. C. Young, “Development of Im- proved Adaptive Approaches to Electricity Demand Fore- casting,” Journal of the Operational Research Society, Vol. 59, No. 8, 2008, pp. 1066-1076. doi:10.1057/palgrave.jors.2602447

[4]   J. W. Taylor, “Short-Term Electricity Demand Forecast- ing Using Double Seasonal Exponential Smoothing,” Journal of the Operational Research Society, Vol. 54, No. 1, 2003, pp.799-805. doi:10.1057/palgrave.jors.2601589

[5]   K. K. F. Wong, H. Song, S. F. Witt and D. C. Wu, “Tourism Forecasting: To Combine or Not to Combine?” Tourism Management, Vol. 28, No. 4, 2007, pp. 1068- 1078. doi:10.1016/j.tourman.2006.08.003

[6]   H. Song, K. K. F. Wong and K. K. S. Chon, “Modelling and Forecasting the Demand for Hong Kong Tourism,” Hospitality Management, Vol. 22, No. 4, 2003, pp. 435- 451. doi:10.1016/S0278-4319(03)00047-1

[7]   N. Kulendran and L. K. Maxwell,” Forecasting Interna- tional Quarterly Tourist Flows Using Error-Correction and Time-Series Models,” International Journal of Fore- casting, Vol. 13, No. 3, 1997, pp. 319-327. doi:10.1016/S0169-2070(97)00020-4

[8]   G. Athanasopoulos and R. J. Hyndman, “Modelling and Forecasting Australian Domestic Tourism,” Tourism Man- agement, Vol. 29, No. 1, 2008, pp. 19-31. doi:10.1016/j.tourman.2007.04.009

[9]   H. Song and S. F. Witt, “Forecasting International Tourist Flows to Macau,” Tourism Management, Vol. 27, No. 2, 2006, pp. 214-224. doi:10.1016/j.tourman.2004.09.004

[10]   H. Song, K. K. F. Wong and K. K. S. Chon, “Modelling and Forecasting the Demand for Hong Kong Tourism,” Hospitality Management, Vol. 22, No. 4, 2003, pp. 435- 451. doi:10.1016/S0278-4319(03)00047-1

[11]   C. O. Oh and B. J. Morzuch, “Evaluating Time-Series Models to Forecast the Demand for Tourism in Singa- pore,” Journal of Travel Research, Vol. 43, 2005, pp. 404- 413. doi:10.1177/0047287505274653

[12]   J. D. Preez and S. F. Witt, “Univariate versus Multivari- ate Time Series Forecasting: An Application to Interna- tional Tourism Demand,” International Journal of Fore- casting, Vol. 19, No. 3, 2003, pp. 435-451. doi:10.1016/S0169-2070(02)00057-2

[13]   V. Cho, “A Comparison of Three Different Approaches to Tourist Arrival Forecasting,” Tourism Management, Vol. 24, No. 3, 2003, pp. 323-330. doi:10.1016/S0261-5177(02)00068-7

[14]   K. Y. Chen and C. H. Wang, “Support Vector Regression with Genetic Algorithms in Forecasting Tourism De- mand,” Tourism Management, Vol. 28, 2007, pp. 215- 226. doi:10.1016/j.tourman.2005.12.018

[15]   J. C. Vu and L. W. Turner, “Regional Data Forecasting Accuracy: The Case of Thailand,” Journal of Travel Re- search, Vol. 45, No. 2, 2006, pp. 186-193. doi:10.1177/0047287506291600

[16]   Y. H. Lin and P. C. Lee, “Novel High-Precision Grey Forecasting Model,” Automation in Construction, Vol. 16, No. 6, 2007, pp. 771-777. doi:10.1016/j.autcon.2007.02.004

[17]   E. O. Brigham, “The Fast Fourier Transform and Its Ap- plications,” Prentice-Hall, Inc., New Jersey, 1998.

[18]   L. C. Hsu, “Applying the Grey Prediction Model to the Global Integrated Circuit Industry,” Technological Fore- casting and Social Change, Vol. 70, No. 6, 2003, pp. 563- 574. doi:10.1016/S0040-1625(02)00195-6

[19]   D. H. Shen, C. M. Wu and J. C. Du, “Application of Grey Model to Predict Acoustical Properties and Tire/Road Noise on Asphalt Pavement,” Proceedings of 2006 IEEE Intelligent Transportation Systems Conference, Toronto, 2006, pp. 175-180. doi:10.1109/ITSC.2006.1706738

[20]   C. Y. Lee, J. D. Lee and Y. Kim, “Demand Forecasting for New Technology with a Short History in a Competi- tive Environment: The Case of the Home Networking Market in South Korea,” Technological Forecasting and Social Change, Vol. 75, No. 1, 2008, pp. 91-106. doi:10.1016/j.techfore.2006.12.001

[21]   J. L. Deng, “Control Problems of Grey System,” Systems and Control Letters, Vol. 5, 1982, pp. 288-294.

[22]   J. L. Deng, “Introduction Grey System Theory,” The Journal of Grey System, Vol. 1, No. 1, 1989, pp. 1-24.

[23]   C. T. Lin and S. Y. Yang, “Forecast the Output Value of Taiwan’s Optoelectronics Industry Using the Grey Fore- casting Model,” Technological Forecasting and Social Change, Vol. 70, No. 2, 2003, pp. 177-186. doi:10.1016/S0040-1625(01)00191-3

[24]   C. L. Tan and S. P. Chang, “Residual Correction Method of Fourier Series to GM (1, 1) Model,” Proceedings of the First National Conference on Grey Theory and Ap- plications, Taiwan, 1996, pp. 93-101.

[25]   P. F. Pai and W. C. Hong, “An Improved Neural Network Model in Forecasting Arrivals,” Annals of Tourism Re- search, Vol. 32, No. 4, 2005, pp. 1138-1141. doi:10.1016/j.annals.2005.01.002

[26]   F. L. Chu, “Forecasting Tourism Demand in Asian-Pa- cific Countries,” Annals of Tourism Research, Vol. 25, No. 3, 1998, pp. 597-615. doi:10.1016/S0160-7383(98)00012-7

[27]   F. L. Chu, “Forecasting Tourism Demand: A Cubic Poly- nomial Approach,” Tourism Management, Vol. 25, No. 2, 2004, pp. 209-218. doi:10.1016/S0261-5177(03)00086-4

 
 
Top