Back
 AiM  Vol.8 No.8 , August 2018
Serotypes, Antibiogram and Genetic Relatedness of Pseudomonas aeruginosa Isolates from Urinary Tract Infections at Urology and Nephrology Center, Mansoura, Egypt
Abstract: Background: Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen that represents a major problem in many hospitals because of its increased resistance to antibiotics and the ability to cause nosocomial infections. The present study aimed to phenotype and genotype isolates of P. aeruginosa from inpatients with UTIs at Urology and Nephrology center, Mansoura, Egypt to study their relatedness. Methods: Thirty nine isolates of P. aeruginosa were phenotypically typed by determination of O-serotypes by slide agglutination technique and antimicrobial resistance patterns by disk-diffusion method. The genetic diversity of isolates was illustrated by performing RAPD-PCR using M13 primer. Results: Serotypes O11, O6 and O10 were the most prevalent. Isolates showed high resistance rates to antipseudmonal antibiotics with high incidence (51.3%) of multidrug resistance (MDR). Amikacin was the most effective. A significant correlation was found between O6, O10 and MDR. A relatively high polymorphism was demonstrated among P. aeruginosa isolates by using RAPD-M13 fingerprinting. Cross transmission was suggested by phenotypically and clonally identical isolates. Conclusion: The study demonstrates the role of combining both classical and molecular typing as a valuable mean to study the origin and cross transmission of P. aeruginosa in UTIs for better assessment of treatment and infection control.
Cite this paper: Abdel-Rhman, S. and Rizk, D. (2018) Serotypes, Antibiogram and Genetic Relatedness of Pseudomonas aeruginosa Isolates from Urinary Tract Infections at Urology and Nephrology Center, Mansoura, Egypt. Advances in Microbiology, 8, 625-638. doi: 10.4236/aim.2018.88042.
References

[1]   GBuhl, M., Peter, S. and Willmann, M. (2015) Prevalence and Risk Factors Associated with Colonization and Infection of Extensively Drug-Resistant Pseudomonas aeruginosa: A Systematic Review. Expert Review of Anti-infective Therapy, 13, 1159-2270.

[2]   Gellatly, S.L. and Hancock, R.E. (2013) Pseudomonas aeruginosa: New Insights into Pathogenesis and Host Defenses. Pathogens and Disease, 67, 159-173.
https://dor.org/10.1111/2049-632X.12033

[3]   Juan, C., PeÑa, C. and Oliver, A. (2017) Host and Pathogen Biomarkers for Severe Pseudomonas aeruginosa Infections. The Journal of Infectious Diseases, 215, S44-S51.
https://dor.org/10.1093/infdis/jiw299

[4]   VVidal, F., Mensa, J., Almela, M., Martínez, J.A., Marco, F., Casals, C., et al. (1996) Epidemiology and Outcome of Pseudomonas aeruginosa Bacteremia, with Special Emphasis on the Influence of Antibiotic Treatment: Analysis of 189 Episodes. Arch Internal Med., 156, 2121-2126.
https://doi.org/10.1001/archinte.1996.00440170139015

[5]   Ferreiro, J.L.L., Otero, J.á., González, L.G., Lamazares, L.N., Blanco, A.A., Sanjurjo, J.R.B., et al. (2017) Pseudomonas aeruginosa Urinary Tract Infections in Hospitalized Patients: Mortality and Prognostic Factors. PLoS ONE, 12, e0178178.
https://dor.org/10.1371/journal.pone.0178178

[6]   Freitas, A.L.P. and Barth, A.L. (2002) Antibiotic Resistance and Molecular Typing of Pseudomonas aeruginosa: Focus on Imipenem. Brazilian Journal of Infectious Diseases, 6, 01-06.

[7]   Czekajło-Kołodziej, U., Giedryskalemba, S. and Mędrala, D. (2006) Phenotypic and Genotypic Characteristics of Pseudomonas aeruginosa Strains Isolated from Hospitals in the North-West Region of Poland. Polish Journal of Micro-biology, 55, 103-112.

[8]   Faure, K., Shimabukuro, D., Ajayi, T., Allmond, L.R., Sawa, T. and Wiener-Kronish, J.P. (2003) O-Antigen Serotypes and Type III Secretory Toxins in Clinical Isolates of Pseudomonas aeruginosa. Journal of Clinical Microbiology, 41, 2158-2160.
https://doi.org/10.1128/JCM.41.5.2158-2160.2003

[9]   Legakis, N.J., Aliferopoulou, M., Papavassiliou, J. and Papapetropoulou, M. (1982) Serotypes of Pseudomonas aeruginosa in Clinical Specimens in Relation to Antibiotic Susceptibility. Journal of Clinical Microbiology, 16, 458-463.

[10]   Gales, A.C., Jones, R.N., Turnidge, J., Rennie, R. and Ramphal, R. (2001) Characterization of Pseudomonas aeruginosa Isolates: Occurrence Rates, Antimicrobial Susceptibility Patterns, and Molecular Typing in the Global SENTRY Antimicrobial Surveillance Program, 1997-1999. Clinical Infectious Diseases, 32, S146-S155.
https://dor.org/10.1086/320186

[11]   Di Martino, P., Gagnière, H., Berry, H. and Bret, L. (2002) Antibiotic Resistance and Virulence Properties of Pseudomonas aeruginosa Strains from Mechanically Ventilated Patients with Pneumonia in Intensive Care Units: Comparison with Imipenem-Resistant Extra-Respiratory Tract Isolates from Uninfected Patients. Microbes and Infection, 4, 613-620.
https://doi.org/10.1016/S1286-4579(02)01579-4

[12]   Gad, G.F., El-Domany, R.A., Zaki, S. and Ashour, H.M. (2007) Characterization of Pseudomonas aeruginosa Isolated from Clinical and Environmental Samples in Minia, Egypt: Prevalence, Antibiogram and Resistance Mechanisms. Journal of Antimicrobial Chemotherapy, 60, 1010-1017.
https://dor.org/10.1093/jac/dkm348

[13]   Grundmann, H., Schneider, C., Hartung, D., Daschner, F.D. and Pitt, T.L. (1995) Discriminatory Power of Three DNA-Based Typing Techniques for Pseudomonas aeruginosa. Journal of Clinical Microbiology, 33, 528-534.

[14]   Wolska, K., Kot, B. and Jakubczak, A. (2012) Phenotypic and Genotypic Diversity of Pseudomonas aeruginosa Strains Isolated from Hospitals in Siedlce (Poland). Brazilian Journal of Microbiology, 43, 274-282.
https://dor.org/10.1590/S1517-838220120001000032

[15]   Williams, J.G., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V. (1990) DNA Polymorphisms Amplified by Arbitrary Primers Are Useful as Genetic Markers. Nucleic Acids Research., 18, 6531-6535.
https://doi.org/10.1093/nar/18.22.6531

[16]   Kumar, N.S. and Gurusubramanian, G. (2011) Random Amplified Polymorphic DNA (RAPD) Markers and Its Applications. Science Vision, 11, 116-124.

[17]   Cruickshank, R., Duguid, J., Marmion, B. and Swain, R. (1975) Medical Microbiology. 12th Edition, Churchill Livingstone Edinburgh, London and New York.

[18]   Macfaddin, J.F. (2000) Biochemical Tests for Identification of Medical Bacteria. 3rd Edition, Lippincott Williams and Wilkin Press, Philadelphia.

[19]   Glupczynski, Y., Bogaerts, P., Deplano, A., Berhin, C., Huang, T.D., Van Eldere, J., et al. (2010) Detection and Characterization of Class A Extended-Spectrum-Beta Lactamase-Producing Pseudomonas aeruginosa Isolates in Belgian Hospitals. Journal of Antimicrobial Chemotherapy, 65, 866-871.
https://doi.org/10.1093/jac/dkq048

[20]   CLSI (2014) Performance Standards for Antimicrobial Susceptibility Testing. Twenty-Fourth Informational Supplement. CLSI Document M100-S24. Clinical and Laboratory Standards Institute, Wayne.

[21]   Jean, S.S., Liao, C.H., Sheng, W.H., Lee, W.S. and Hsueh, P.R. (2017) Comparison of Commonly Used Antimicrobial Susceptibility Testing Methods for Evaluating Susceptibilities of Clinical Isolates of Enterobacteriaceae and Nonfermentative Gram-Negative Bacilli to Cefoperazone-Sulbactam. Journal of Microbiology, Immunology and Infection, 50, 454-463.
https://doi.org/10.1016/j.jmii.2015.08.024

[22]   Magiorakos, A.P., Srinivasan, A., Carey, R.B., Carmeli, Y., Falagas, M.E., Giske, C.G., et al. (2012) Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clinical Microbiology and Infection, 18, 268-281.
https://doi.org/10.1111/j.1469-0691.2011.03570.x

[23]   Englen, M.D. and Kelley, L.C. (2000) A Rapid DNA Isolation Procedure for the Identification of Campylobacter jejuni by the Polymerase Chain Reaction. Letters in Applied Microbiology, 31, 421-426.
https://doi.org/10.1046/j.1365-2672.2000.00841.x

[24]   Satpathy, G., Patnayak, D., Titiyal, J.S., Nayak, N., Tandon, R., Sharma, N., et al. (2010) Post-Operative Endophthalmitis: Antibiogram & Genetic Relatedness between Pseudomonas aeruginosa Isolates from Patients & Phacoemulsifiers. Indian Journal of Medical Research, 131, 571-577.

[25]   El-Bialy, A.A., El-Shennawy, G.A., Mosaad, A.A. and Bendary, L.A. (2008) Phenotyping and Genotyping of Pseudomonas aeruginosa Urine Isolates in Zagazig University Hospitals. The Egyptian Journal of Medical Microbiology, 17, 615-626.

[26]   Estahbanati, H.K., Kashani, P.P. and Ghanaatpisheh, F. (2002) Frequency of Pseudomonas aeruginosa Serotypes in Burn Wound Infections and Their Resistance to Antibiotics. Burns, 28, 340-348.
https://doi.org/10.1016/S0305-4179(02)00024-4

[27]   Lu, Q., Eggimann, P., Luyt, C.E., Wolff, M., Tamm, M., François, B., et al. (2014) Pseudomonas aeruginosa Serotypes in Nosocomial Pneumonia: Prevalence and Clinical Outcomes. Critical Care, 18, R17.
https://doi.org/10.1186/cc13697

[28]   Fonseca, A.P., Correia, P., Sousa, J.C. and Tenreiro, R. (2007) Association Patterns of Pseudomonas aeruginosa Clinical Isolates as Revealed by Virulence Traits, Antibiotic Resistance, Serotype and Genotype. FEMS Immunology and Medical Microbiology, 51, 505-516.
https://doi.org/10.1111/j.1574-695X.2007.00328.x

[29]   Shehabi, A.A., Masoud, H. and BalkamMaslamani, F.A. (2005) Common Antimicrobial Resistance Patterns, Biotypes and Serotypes Found among Pseudomonas aeruginosa Isolates from Patient’s Stools and Drinking Water Sources in Jordan. Journal of Chemotherapy, 17, 179-183.
https://doi.org/10.1179/joc.2005.17.2.179

[30]   Stanković-Nedeljković, N., Tiodorović, B., Kocić, B., Ćirić, V., Milojković, M. and Waisi, H. (2015) Pseudomonas aeruginosa Serotypes and Resistance to Antibiotics from Wound Swabs. Vojnosanitetski pregled, 72, 996-1003.
https://doi.org/10.2298/VSP131224108S

[31]   Hafez, S.F., Omar, N.Y., Abilelslam, H. and Salah, H. (1991) Multiple Typing of Pseudomonas aeruginosa Clinical Isolates from Different Hospital Departments. Bul Alex Fac Med, 27, 721-735.

[32]   Mohammed, S. (2000) Susceptibility of Multiresistant Nosocomial Isolates of Pseudomonas aeruginosa to Trovafloxacin (A New Quinolone) and Their Typing by Sodium Dodecyl Sulphatepolyacryl-Amide Gel Electrophoresis (SDSPAGE). Faculty of Medicine, University of Alexandria, Alexandria.

[33]   Elogne, C.K., Kalpy, J.C., Yeo, A., Guessennd, N., Anne, J.C., Ngoran, T.K., et al. (2018) Antibiotic Susceptibility and Serotype Patterns of Pseudomonas aeruginosa from Clinical Isolates in Abidjan, Cote dIvoire. African Journal of Microbiology Research, 12, 62-67.
https://doi.org/10.5897/AJMR2017.8757

[34]   Cattoen, C., Levent, T., Grandbastien, B., Descamps, D., Bouillet, L., Coignard, B., et al. (1999) Regional Survey of Pseudomonas aeruginosa in Northern France: Epidemiological and Microbiological Data. Médecine et Maladies Infectieuses, 29, 160-166.
https://doi.org/10.1016/S0399-077X(99)80035-3

[35]   El-Domany, R.A., Emara, M., El-Magd, M.A., Moustafa, W.H. and Abdeltwab, N.M. (2017) Emergence of Imipenem-Resistant Pseudomonas aeruginosa Clinical Isolates from Egypt Coharboring VIM and IMP Carbapenemases. Microbial Drug Resistance, 23, 682-686.
https://doi.org/10.1089/mdr.2016.0234

[36]   Hashem, H., Hanora, A., Abdalla, S., Shawky, A. and Saad, A. (2016) Carbapenem Susceptibility and Multidrug-Resistance in Pseudomonas aeruginosa Isolates in Egypt. Jundishapur Journal of Microbiology, 9, e30257.
https://doi.org/10.5812/jjm.30257

[37]   Abaza, A.F., El Shazly, S.A., Selim, H.S. and Aly, G.S. (2017) Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa in a Healthcare Setting in Alexandria. Polish Journal of Microbiology, 66, 297-308.
https://doi.org/10.5604/01.3001.0010.4855

[38]   Vizujė, G., Pavilonis, A. and Kareivienė, V. (2007) The Peculiarities of Pseudomonas aeruginosa Resistance to Antibiotics and Prevalence of Serogroups. Medicina, 43, 36-42.

[39]   Al-Haddad, A.M. (2016) Serotypes and Antibiogram of Pseudomonas aeruginosa Isolated from Hospitals in Yemen. EC Microbiology, 4, 761-772.

[40]   Loureiro, M.M., De Moraes, B.A., Mendonça, V.L.F., Quadra, M.R.R., Pinheiro, G.S. and Asensi, M.D. (2002) Pseudomonas aeruginosa: Study of Antibiotic Resistance and Molecular Typing in Hospital Infection Cases in a Neonatal Intensive Care Unit from Rio de Janeiro City, Brazil. Memórias do Instituto Oswaldo Cruz, 97, 387-394.
https://doi.org/10.1590/S0074-02762002000300020

[41]   Aydoğan, Ö.T., Çetin, I. and Köklükaya, Y. (2015) Clinical Isolates of Pseudomonas aeruginosa Cultured from Patients Admitted to the Intensive Care Unit (ICU). International Journal of Medicine and Medical Sciences, 5, 232-237.

[42]   Menon, P.K., Eswaran, S.P., Pant, S.S., Bharadwaj, R. and Nagendra, A. (2003) Random Ampli-fication of Polymorphic DNA Based Typing of Pseudomonas aeruginosa. Medical Journal Armed Forces India, 59, 25-28.
https://doi.org/10.1016/S0377-1237(03)80099-0

[43]   Raafat, M.M., Ali-Tammam, M. and Ali, A.E. (2016) Phenotypic and Genotypic Characterization of Pseudomonas aeruginosa Isolates from Egyptian Hospitals. African Journal of Microbiology Research, 10, 1645-1653.
https://doi.org/10.5897/AJMR2016.8254

[44]   Nanvazadeh, F., Khosravi, A.D., Zolfaghari, M.R. and Parhizgari, N. (2013) Genotyping of Pseudomonas aeruginosa Strains Isolated from Burn Patients by RAPD-PCR. Burns, 39, 1409-1413.
https://doi.org/10.1016/j.burns.2013.03.008

[45]   Hassan, R., Barwa, R., Shaaban, M.I. and Adel, L. (2015) Random Amplified DNA Polymorphism of Klebsiella pneumoniae Isolates from Mansoura University Hospitals, Egypt. African Journal of Microbiology Research, 9, 621-630.
https://doi.org/10.5897/AJMR2014.7256

[46]   Liu, Y., Davin-Regli, A., Bosi, C., Charrel, R.N. and Bollet, C. (1996) Epidemiological Investigation of Pseudomonas aeruginosa Nosocomial Bacteraemia Isolates by PCR-Based DNA Fingerprinting Analysis. Journal of Medical Microbiology, 45, 359-365.
https://doi.org/10.1099/00222615-45-5-359

[47]   Vandamme, P., Pot, B., Gillis, M., De Vos, P., Kersters, K. and Swings, J. (1996) Polyphasic Taxonomy, a Consensus Approach to Bacterial Systematics. Microbiological Reviews, 60, 407-438.

 
 
Top