[1] Kek, S.L., Teo, K.L. and Mohd Ismail, A.A. (2010) An Integrated Optimal Control Algorithm for Discrete-Time Nonlinear Stochastic System. International Journal of Control, 83, 2536-2545.
https://doi.org/10.1080/00207179.2010.531766
[2] Kek, S.L., Teo, K.L. and Mohd Ismail, A.A. (2012) Filtering Solution of Nonlinear Stochastic Optimal Control Problem in Discrete-Time with Model-Reality Differences. Numerical Algebra, Control and Optimization, 2, 207-222.
https://doi.org/10.3934/naco.2012.2.207
[3] Kek, S.L., Mohd Ismail, A.A., Teo, K.L. and Rohanin, A. (2013) An Iterative Algorithm Based on Model-Reality Differences for Discrete-Time Nonlinear Stochastic Optimal Control Problems. Numerical Algebra, Control and Optimization, 3, 109-125.
https://doi.org/10.3934/naco.2013.3.109
[4] Kek, S.L., Teo, K.L. and Mohd Ismail, A.A. (2015) Efficient Output Solution for Nonlinear Stochastic Optimal Control Problem with Model-Reality Differences. Mathematical Problems in Engineering, 2015, Article ID: 659506.
https://doi.org/10.1155/2015/659506
[5] Kek, S.L., Mohd Ismail, A.A. and Teo, K.L. (2015) A Gradient Algorithm for Optimal Control Problems with Model-Reality Differences. Numerical Algebra, Control and Optimization, 5, 252-266.
[6] Kek, S.L. and Mohd Ismail, A.A. (2015) Output Regulation for Discrete-Time Nonlinear Stochastic Optimal Control Problems with Model-Reality Differences. Numerical Algebra, Control and Optimization, 5, 275-288.
https://doi.org/10.3934/naco.2015.5.275
[7] Kek, S.L., Li, J. and Teo, K.L. (2017) Least Squares Solution for Discrete Time Nonlinear Stochastic Optimal Control Problem with Model-Reality Differences. Applied Mathematics, 8, 1-14.
https://doi.org/10.4236/am.2017.81001
[8] Kek, S.L., Li, J., Leong, W.J. and Mohd Ismail, A.A. (2017) A Gauss-Newton Approach for Nonlinear Optimal Control Problem with Model-Reality Differences. Open Journal of Optimization, 6, 85-100.
https://doi.org/10.4236/ojop.2017.63007
[9] Kek, S.L., Sim, S.Y., Leong, W.J. and Teo, K.L. (2018) Discrete-Time Nonlinear Stochastic Optimal Control Problem Based on Stochastic Approximation Approach. Advances in Pure Mathematics, 8, 232-244.
https://doi.org/10.4236/apm.2018.83012
[10] Becerra, V.M. and Roberts, P.D. (1996) Dynamic Integrated System Optimization and Parameter Estimation for Discrete Time Optimal Control of Nonlinear Systems. International Journal of Control, 63, 257-281.
https://doi.org/10.1080/00207179608921843
[11] Roberts, P.D. and Becerra, V.M. (2001) Optimal Control of a Class of Discrete-Continuous Nonlinear Systems Decomposition and Hierarchical Structure. Automatica, 37, 1757-1769.
https://doi.org/10.1016/S0005-1098(01)00141-8
[12] Roberts, P.D. (1979) An Algorithm for Steady-State System Optimization and Parameter Estimation. International Journal of Systems Science, 10, 719-734.
https://doi.org/10.1080/00207727908941614
[13] Roberts, P.D. and Williams, T.W.C. (1981) On an Algorithm for Combined System Optimization and Parameter Estimation. Automatica, 17, 199-209.
https://doi.org/10.1016/0005-1098(81)90095-9
[14] Chong, E.K.P. and Zak, S.H. (2013) An Introduction to Optimization. 4th Edition, John Wiley & Sons, Inc., Hoboken, New Jersey.
[15] Mostafa, E.M.E. (2014) A Nonlinear Conjugate Gradient Method for A Special Class of Matrix Optimization Problems. Journal of Industrial and Management Optimization, 10, 883-903.
https://doi.org/10.3934/jimo.2014.10.883
[16] Lasdon, L.S. and Mitter, S.K. (1967) The Conjugate Gradient Method for Optimal Control Problems. IEEE Transactions on Automatic Control, 12, 132-138.
https://doi.org/10.1109/TAC.1967.1098538
[17] Nwaeze, E. (2011) An Extended Conjugate Gradient Method for Optimizing Continuous-Time Optimal Control Problems. Canadian Journal on Computing in Mathematics, Natural Sciences, Engineering & Medicine, 2, 39-44.
[18] Raji, R.A. and Oke, M.O. (2015) Higher-Order Conjugate Gradient Method for Solving Continuous Optimal Control Problems. IOSR Journal of Mathematics, 11, 88-90.
[19] Brock, W.A. and Mirman, L. (1972) Optimal Economic Growth and Uncertainty: The Discounted Case. Journal of Economy Theory, 4, 479-513.
https://doi.org/10.1016/0022-0531(72)90135-4
[20] Bryson, A.E. and Ho, Y.C. (1975) Applied Optimal Control. Hemisphere, Washington DC.
[21] Lewis, F.L., Vrabie, V. and Symos, V.L. (2012) Optimal Control. 3rd Edition, John Wiley & Sons, Inc., New York.
https://doi.org/10.1002/9781118122631
[22] Kirk, D.E. (2004) Optimal Control Theory: An Introduction. Dover Publications, New York.
[23] Grüne, L., Semmler, W. and Stieler, M. (2015) Using Nonlinear Model Predictive Control for Dynamic Decision Problems in Economics. Journal of Economic Dynamics and Control, 60, 112-133.
https://doi.org/10.1016/j.jedc.2015.08.010
[24] Santos, M.S. and Vigo-Aguiar, J. (1998) Analysis of a Numerical Dynamic Programming Algorithm Applied to Economic Models. Econometrica, 66, 409-426.
https://doi.org/10.2307/2998564