[1] China Electricity Council (CEC) (2018) 2017-2018 National Power Supply and Demand Situation Analysis and Forecast Report.
http://www.cec.org.cn/guihuayutongji/gongzuodongtai/2018-02-01/177584.html
[2] Chen, M.X. (2017) New Energy Development Leads European Power Changes. China Power Enterprise Management, No. 34, 94-97.
[3] Global Wind Energy Council (GWEC) (2017) Global Wind Power Loading Statistics in 2016. Wind Energy, No. 2, 52-57.
[4] Xue, Y.S., Lei, X., et al. (2014) A Review on Impacts of Wind Power Uncertainties on Power Systems. Proceedings of the CSEE, 34, 5029-5040.
[5] Muljadi, E., Gevorgian, V., Singh, M. and Santoso, S. (2012) Understanding Inertial and Frequency Response of Wind Power Plants. IEEE Power Electronics and Machines in Wind Applications, Denver, 16-18 July 2012, 1-8.
[6] Singarao, V.Y. and Rao, V.S. (2016) Frequency Responsive Services by Wind Generation Resources in United States. Renewable & Sustainable Energy Reviews, 55, 1097-1108.
https://doi.org/10.1016/j.rser.2015.11.011
[7] Zhang, Z.S., Sun, Y.Z., Lin, J., et al. (2012) Coordinated Frequency Regulation by Doubly Fed Induction Generator-Based Wind Power Plants. IET Renewable Power Generation, 6, 38-47.
https://doi.org/10.1049/iet-rpg.2010.0208
[8] Moutis, P., Loukarakis, E., Papathanasiou, S., et al. (2009) Primary Load-Frequency Control from Pitch-Controlled Wind Turbines. IEEE Bucharest PowerTech, Bucharest, 28 June-2 July 2009, 1-7.
[9] Erlich, I. and Wilch, M. (2010) Primary Frequency Control by Wind Turbines. IEEE Power & Energy Society General Meeting, Providence, RI, 25-29 July 2010, 1-8.
[10] Fan, L.X., Guo, H., et al. (2016) Wind Power Fluctuation Suppression Based on Control Coordination between Energy Storage and Pitch Angle. Electric Power Automation Equipment, No. 9, 100-105.
[11] Wilches-Bernal, F., Chow, J.H. and Sanchez-Gasca, J.J. (2015) Doubly Fed Induction Generator (DFIG)-Based Wind Farm Control Framework for Primary Frequency and Inertial Response Application. IEEE Transactions on Power Systems, 1, 1723-1727.
[12] Bao, Y.Q., Li, Y., Wang, C.N., et al. (2015) On Demand Response Participating in the Frequency Control of the Grid under High Wind Penetration. Power System Protection and Control, 43, 32-37.
[13] Lei, D., Yin, S.Y., et al. (2015) Integrated Frequency Control Strategy of DFIGs Based on Virtual Inertia and Over-Speed Control. Power System Technology, No. 9, 2385-2391.
[14] Jiao, P.Y., Liu, F., et al. (2016) Frequency Regulation Strategy of DFIG in Micro-Grid System Based on Subsection Control. Electrical Measurement & Instrumentation, No. 12, 69-74.
[15] Jiang, Y., Bian, X.Y., et al. (2017) Research on Doubly Fed Induction Generator Participation in Microgrid Frequency regulation Based on Variable Load Shedding Ratio Over-Speed Control. Electric Machines & Control Application, No. 9, 118-124.
[16] Peng, X. and Liu, R. (2011) Research on the Frequency Regulation of Aiding System of VSCF Double-Fed Wind Generator. Power System Protection and Control, No. 11, 56-61.
[17] Wang, Q., Bai, L., et al. (2014) The Inertial Control of Double-Fed Wind-Driven Generator Set. Electric Switcher, No. 4, 24-28.
[18] Liu, D. and Wang, Q. (2016) Research on Virtual Inertial Controller of DFIG. Electrical Measurement & Instrumentation, No. 14, 46-50.
[19] Li, S., Deng, C., et al. (2016) An Inertial Control Method of Doubly Fed Induction Generators Suitable for Power Grid with High Wind Power Penetration. Automation of Electric Power Systems, 40, 33-38.
[20] Fu, Y., Wang, Y., et al. (2014) Virtual Inertia Control of Offshore Wind Farms with VSC-HVDC for Grid-Connection. Electrical Measurement & Instrumentation, No. 1, 43-48.
[21] Tarnowski, G.C., Kjar, P.C., Sorensen, P.E., et al. (2009) Variable Speed Wind Turbines Capability for Temporary Over-Production. Power & Energy Society General Meeting, 26-30 July 2009, 1-7.
[22] Jiao, P. (2015) Research on Frequency Strategy of Doubly-Fed Induction Generator in Microgrid. Harbin Institute of Technology, Harbin.
[23] Jiang, Q. and Gong, Y. (2015) Review of Wind Power Integration Control with Energy Storage Technology. Power System Technology, 39, 3360-3368.
[24] Ramtharan, G., Ekanayake, J.B. and Jenkins, N. (2007) Frequency Support from Doubly Fed Induction Generator Wind Turbines. IET Renewable Power Generation, 1, 3-9.
[25] Jiang, W. and Lu, J. (2014) Research on Probabilistic Model of Droop Control Coefficient of Grid-Connected Wind Farm. Power System Technology, 38, 3431-3435.
[26] Pan, W., Quan, R. and Wang, F. (2015) A Variable Droop Control Strategy for Doubly-Fed Induction Generators. Automation of Electric Power Systems, 39, 126-131.
[27] Tian, Y., Miu, Q., et al. (2016) Droop Control Strategy for Wind Power Decentralized Integration Based on VSC-HVDC Systems. Automation of Electric Power Systems, No. 3, 103-109.
[28] Zhang, G., Yang, J., et al. (2017) Primary Frequency Regulation Strategy of DFIG Based on Virtual Inertia and Frequency Droop Control. Transactions of China Electrotechnical Society, No. 22, 225-232.
[29] Rezkalla, M., Marinelli, M., Pertl, M., et al. (2016) Trade-Off Analysis of Virtual Inertia and Fast Primary Frequency Control during Frequency Transients in a Converter Dominated Network. IEEE Innovative Smart Grid Technologies, Melbourne, 28 November-1 December 2016, 890-895.
[30] Wang, S. and Yu, J. (2013) Coordinated Dispatch Regulation Strategy between Non-AGC Units and AGC Units with High Wind Power Penetration. Proceedings of the CSEE, 33, 156-163.
[31] Variani, M.H. and Tomsovic, K. (2013) Distributed Automatic Generation Control Using Flatness-Based Approach for High Penetration of Wind Generation. IEEE Transactions on Power Systems, 28, 3002-3009.
https://doi.org/10.1109/TPWRS.2013.2257882
[32] He, C., Wang, H., Wei, Z., et al. (2015) Distributed Coordinated Real-Time Control of Wind Farm and AGC Units. Proceedings of the CSEE, 35, 302-309.
[33] Zhang, L., Luo, Y., et al. (2016) Trans-Regional and Distributed Optimal Coordination Control of AGC Units under Large-Scale Wind Power Grid. Transactions of China Electrotechnical Society, No. 9, 42-49.
[34] Xu, C., Wei, Y., et al. (2017) Research on Automatic Generation Turbine Control Strategy of Large Wind Turbine. Power System Protection and Control, No. 2, 69-74.
[35] Banakar, H., Luo, C. and Ooi, B.T. (2008) Impacts of Wind Power Minute-to-Minute Variations on Power System Operation. IEEE Transactions on Power Systems, 23, 150-160.
https://doi.org/10.1109/TPWRS.2007.913298
[36] Jiang, X., Li, H., Sheng, K., et al. (2011) The Analysis and Application of AGC in Hunan Power Grid. Hunan Electric Power, 31, 98-101.
[37] Guo, T., Qin, R., et al. (2014) Frequency Regulation Method with Using Steam Turbine Regenerators in Wind Power System. Energy Conservation Technology, No. 2, 108-111.
[38] Li, F., Yu, W. and Zhang, Z. (2018) Load Frequency Control for Multi-Area Power System with Wind Power Generation. Water Resources and Power, No. 1, 195-199.
[39] Wang, Q., Guo, Y.F., et al. (2018) Primary Frequency Regulation Strategy of Thermal Units for a Power System with High Penetration Wind Power. Proceedings of the CSEE, No. 4, 974-984
[40] Miao, F., Tang, X. and Qi, Z. (2015) Analysis of Frequency Characteristics of Power System Based on Wind Farm-Energy Storage Combined Frequency Regulation. High Voltage Engineering, 41, 2209-2216.
[41] Feng, Q., Zhou, Y., Gui, J., et al. (2017) Literature Review on Frequency Regulation Technologies of the Power System with Large Scale Wind Power. Electrical Measurement & Instrumentation, 54, 39-46.
[42] Liu, S., Wen, J. and Sun, H. (2015) Hybrid Energy Storage System and Its Control Strategies Intended for Windpower Conditioning. Proceedings of the CSEE, 35, 95-102.
[43] Zhou, S. and Tang, J. (2017) Research on Coordinated Control Strategy of Wind Power and Energy Storage in System Frequency Regulation. Mechanical & Electrical Engineering Technology, No. 11, 31-35.
[44] Tokida, A., Tahara, S., Yoshida, Y., et al. (2016) Frequency Control with Dead Band by Adjustable-Speed Pumped-Storage Generator for Power System with Wind Farms. 19th International Conference on Electrical Machines and Systems, Chiba, 13-16 November 2016, 1-6.
[45] Hu, Z., Xia, R., et al. (2016) Joint Operation Optimization of Wind-Storage Union with Energy Storage Participating Frequency Regulation. Power System Technology, 40, 2251-2256.
[46] Yan, G., Wang, Y., Zhong, C., et al. (2016) Frequency Control Strategy for Wind Storage Combined System. Electric Power Construction, 37, 55-60.
[47] Miao, F., Tang, X. and Qi, Z. (2015) Capacity Configuration Method for Wind Power Plant Inertia Response Considering Energy Storage. Automation of Electric Power Systems, 39, 6-11.
[48] Qu, L. and Wei, Q. (2011) Constant Power Control of DFIG Wind Turbines with Supercapacitor Energy Storage. IEEE Transactions on Industry Applications, 47, 359-367.
https://doi.org/10.1109/TIA.2010.2090932
[49] Ye, R., Guo, Z., Liu, R., et al. (2014) A Windenergy Storage Capacity Optimization Method Based on the Analysis of Wind Power Prediction Error. Automation of Electric Power Systems, 38, 28-34.