Back
 EPE  Vol.10 No.8 , August 2018
Review on Power System Frequency Regulation with High Wind Power Permeability
Abstract: In recent years, global wind power has developed rapidly to alleviate environmental pollution and energy crisis. Due to the potential of enhancing the stability of power system through the application of wind power participating in power grid frequency regulation, the large-scale integration of wind power has become a hot issue for academic research in recent years. This paper classifies the frequency control problems of wind power integration and summarizes the research of power system frequency regulation strategy with high wind power permeability. Energy storage system participating in frequency regulation of the power system with high wind permeability is reviewed and analyzed.
Cite this paper: Ye, Z. , Xie, Y. and Zhu, H. (2018) Review on Power System Frequency Regulation with High Wind Power Permeability. Energy and Power Engineering, 10, 366-382. doi: 10.4236/epe.2018.108023.
References

[1]   China Electricity Council (CEC) (2018) 2017-2018 National Power Supply and Demand Situation Analysis and Forecast Report.
http://www.cec.org.cn/guihuayutongji/gongzuodongtai/2018-02-01/177584.html

[2]   Chen, M.X. (2017) New Energy Development Leads European Power Changes. China Power Enterprise Management, No. 34, 94-97.

[3]   Global Wind Energy Council (GWEC) (2017) Global Wind Power Loading Statistics in 2016. Wind Energy, No. 2, 52-57.

[4]   Xue, Y.S., Lei, X., et al. (2014) A Review on Impacts of Wind Power Uncertainties on Power Systems. Proceedings of the CSEE, 34, 5029-5040.

[5]   Muljadi, E., Gevorgian, V., Singh, M. and Santoso, S. (2012) Understanding Inertial and Frequency Response of Wind Power Plants. IEEE Power Electronics and Machines in Wind Applications, Denver, 16-18 July 2012, 1-8.

[6]   Singarao, V.Y. and Rao, V.S. (2016) Frequency Responsive Services by Wind Generation Resources in United States. Renewable & Sustainable Energy Reviews, 55, 1097-1108.
https://doi.org/10.1016/j.rser.2015.11.011

[7]   Zhang, Z.S., Sun, Y.Z., Lin, J., et al. (2012) Coordinated Frequency Regulation by Doubly Fed Induction Generator-Based Wind Power Plants. IET Renewable Power Generation, 6, 38-47.
https://doi.org/10.1049/iet-rpg.2010.0208

[8]   Moutis, P., Loukarakis, E., Papathanasiou, S., et al. (2009) Primary Load-Frequency Control from Pitch-Controlled Wind Turbines. IEEE Bucharest PowerTech, Bucharest, 28 June-2 July 2009, 1-7.

[9]   Erlich, I. and Wilch, M. (2010) Primary Frequency Control by Wind Turbines. IEEE Power & Energy Society General Meeting, Providence, RI, 25-29 July 2010, 1-8.

[10]   Fan, L.X., Guo, H., et al. (2016) Wind Power Fluctuation Suppression Based on Control Coordination between Energy Storage and Pitch Angle. Electric Power Automation Equipment, No. 9, 100-105.

[11]   Wilches-Bernal, F., Chow, J.H. and Sanchez-Gasca, J.J. (2015) Doubly Fed Induction Generator (DFIG)-Based Wind Farm Control Framework for Primary Frequency and Inertial Response Application. IEEE Transactions on Power Systems, 1, 1723-1727.

[12]   Bao, Y.Q., Li, Y., Wang, C.N., et al. (2015) On Demand Response Participating in the Frequency Control of the Grid under High Wind Penetration. Power System Protection and Control, 43, 32-37.

[13]   Lei, D., Yin, S.Y., et al. (2015) Integrated Frequency Control Strategy of DFIGs Based on Virtual Inertia and Over-Speed Control. Power System Technology, No. 9, 2385-2391.

[14]   Jiao, P.Y., Liu, F., et al. (2016) Frequency Regulation Strategy of DFIG in Micro-Grid System Based on Subsection Control. Electrical Measurement & Instrumentation, No. 12, 69-74.

[15]   Jiang, Y., Bian, X.Y., et al. (2017) Research on Doubly Fed Induction Generator Participation in Microgrid Frequency regulation Based on Variable Load Shedding Ratio Over-Speed Control. Electric Machines & Control Application, No. 9, 118-124.

[16]   Peng, X. and Liu, R. (2011) Research on the Frequency Regulation of Aiding System of VSCF Double-Fed Wind Generator. Power System Protection and Control, No. 11, 56-61.

[17]   Wang, Q., Bai, L., et al. (2014) The Inertial Control of Double-Fed Wind-Driven Generator Set. Electric Switcher, No. 4, 24-28.

[18]   Liu, D. and Wang, Q. (2016) Research on Virtual Inertial Controller of DFIG. Electrical Measurement & Instrumentation, No. 14, 46-50.

[19]   Li, S., Deng, C., et al. (2016) An Inertial Control Method of Doubly Fed Induction Generators Suitable for Power Grid with High Wind Power Penetration. Automation of Electric Power Systems, 40, 33-38.

[20]   Fu, Y., Wang, Y., et al. (2014) Virtual Inertia Control of Offshore Wind Farms with VSC-HVDC for Grid-Connection. Electrical Measurement & Instrumentation, No. 1, 43-48.

[21]   Tarnowski, G.C., Kjar, P.C., Sorensen, P.E., et al. (2009) Variable Speed Wind Turbines Capability for Temporary Over-Production. Power & Energy Society General Meeting, 26-30 July 2009, 1-7.

[22]   Jiao, P. (2015) Research on Frequency Strategy of Doubly-Fed Induction Generator in Microgrid. Harbin Institute of Technology, Harbin.

[23]   Jiang, Q. and Gong, Y. (2015) Review of Wind Power Integration Control with Energy Storage Technology. Power System Technology, 39, 3360-3368.

[24]   Ramtharan, G., Ekanayake, J.B. and Jenkins, N. (2007) Frequency Support from Doubly Fed Induction Generator Wind Turbines. IET Renewable Power Generation, 1, 3-9.

[25]   Jiang, W. and Lu, J. (2014) Research on Probabilistic Model of Droop Control Coefficient of Grid-Connected Wind Farm. Power System Technology, 38, 3431-3435.

[26]   Pan, W., Quan, R. and Wang, F. (2015) A Variable Droop Control Strategy for Doubly-Fed Induction Generators. Automation of Electric Power Systems, 39, 126-131.

[27]   Tian, Y., Miu, Q., et al. (2016) Droop Control Strategy for Wind Power Decentralized Integration Based on VSC-HVDC Systems. Automation of Electric Power Systems, No. 3, 103-109.

[28]   Zhang, G., Yang, J., et al. (2017) Primary Frequency Regulation Strategy of DFIG Based on Virtual Inertia and Frequency Droop Control. Transactions of China Electrotechnical Society, No. 22, 225-232.

[29]   Rezkalla, M., Marinelli, M., Pertl, M., et al. (2016) Trade-Off Analysis of Virtual Inertia and Fast Primary Frequency Control during Frequency Transients in a Converter Dominated Network. IEEE Innovative Smart Grid Technologies, Melbourne, 28 November-1 December 2016, 890-895.

[30]   Wang, S. and Yu, J. (2013) Coordinated Dispatch Regulation Strategy between Non-AGC Units and AGC Units with High Wind Power Penetration. Proceedings of the CSEE, 33, 156-163.

[31]   Variani, M.H. and Tomsovic, K. (2013) Distributed Automatic Generation Control Using Flatness-Based Approach for High Penetration of Wind Generation. IEEE Transactions on Power Systems, 28, 3002-3009.
https://doi.org/10.1109/TPWRS.2013.2257882

[32]   He, C., Wang, H., Wei, Z., et al. (2015) Distributed Coordinated Real-Time Control of Wind Farm and AGC Units. Proceedings of the CSEE, 35, 302-309.

[33]   Zhang, L., Luo, Y., et al. (2016) Trans-Regional and Distributed Optimal Coordination Control of AGC Units under Large-Scale Wind Power Grid. Transactions of China Electrotechnical Society, No. 9, 42-49.

[34]   Xu, C., Wei, Y., et al. (2017) Research on Automatic Generation Turbine Control Strategy of Large Wind Turbine. Power System Protection and Control, No. 2, 69-74.

[35]   Banakar, H., Luo, C. and Ooi, B.T. (2008) Impacts of Wind Power Minute-to-Minute Variations on Power System Operation. IEEE Transactions on Power Systems, 23, 150-160.
https://doi.org/10.1109/TPWRS.2007.913298

[36]   Jiang, X., Li, H., Sheng, K., et al. (2011) The Analysis and Application of AGC in Hunan Power Grid. Hunan Electric Power, 31, 98-101.

[37]   Guo, T., Qin, R., et al. (2014) Frequency Regulation Method with Using Steam Turbine Regenerators in Wind Power System. Energy Conservation Technology, No. 2, 108-111.

[38]   Li, F., Yu, W. and Zhang, Z. (2018) Load Frequency Control for Multi-Area Power System with Wind Power Generation. Water Resources and Power, No. 1, 195-199.

[39]   Wang, Q., Guo, Y.F., et al. (2018) Primary Frequency Regulation Strategy of Thermal Units for a Power System with High Penetration Wind Power. Proceedings of the CSEE, No. 4, 974-984

[40]   Miao, F., Tang, X. and Qi, Z. (2015) Analysis of Frequency Characteristics of Power System Based on Wind Farm-Energy Storage Combined Frequency Regulation. High Voltage Engineering, 41, 2209-2216.

[41]   Feng, Q., Zhou, Y., Gui, J., et al. (2017) Literature Review on Frequency Regulation Technologies of the Power System with Large Scale Wind Power. Electrical Measurement & Instrumentation, 54, 39-46.

[42]   Liu, S., Wen, J. and Sun, H. (2015) Hybrid Energy Storage System and Its Control Strategies Intended for Windpower Conditioning. Proceedings of the CSEE, 35, 95-102.

[43]   Zhou, S. and Tang, J. (2017) Research on Coordinated Control Strategy of Wind Power and Energy Storage in System Frequency Regulation. Mechanical & Electrical Engineering Technology, No. 11, 31-35.

[44]   Tokida, A., Tahara, S., Yoshida, Y., et al. (2016) Frequency Control with Dead Band by Adjustable-Speed Pumped-Storage Generator for Power System with Wind Farms. 19th International Conference on Electrical Machines and Systems, Chiba, 13-16 November 2016, 1-6.

[45]   Hu, Z., Xia, R., et al. (2016) Joint Operation Optimization of Wind-Storage Union with Energy Storage Participating Frequency Regulation. Power System Technology, 40, 2251-2256.

[46]   Yan, G., Wang, Y., Zhong, C., et al. (2016) Frequency Control Strategy for Wind Storage Combined System. Electric Power Construction, 37, 55-60.

[47]   Miao, F., Tang, X. and Qi, Z. (2015) Capacity Configuration Method for Wind Power Plant Inertia Response Considering Energy Storage. Automation of Electric Power Systems, 39, 6-11.

[48]   Qu, L. and Wei, Q. (2011) Constant Power Control of DFIG Wind Turbines with Supercapacitor Energy Storage. IEEE Transactions on Industry Applications, 47, 359-367.
https://doi.org/10.1109/TIA.2010.2090932

[49]   Ye, R., Guo, Z., Liu, R., et al. (2014) A Windenergy Storage Capacity Optimization Method Based on the Analysis of Wind Power Prediction Error. Automation of Electric Power Systems, 38, 28-34.

 
 
Top