[1] Alter, O., Brown, P. O., & Botstein, D. (2000). Singular value decomposition for genome-wide expression data processing and modeling. Proceedings of the National Academy of Sciences, 97, 10101. doi:10.1073/pnas.97.18.10101
[2] Alter, O., Brown, P. O., & Botstein, D. (2003). Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proceedings of the National Academy of Sciences, 100, 3351. doi:10.1073/pnas.0530258100
[3] Alter, O., & Golub, G. H. (2006). Singular value decomposition of genome-scale mRNA lengths distribution reveals asymmetry in RNA gel electrophoresis band broadening. Proceedings of the National Academy of Sciences, 103, 11828. doi:10.1073/pnas.0604756103
[4] Berry, M. W., Dumais, S. T., & O’Brien, G. W. (1995). Using linear algebra for intelligent information retrieval. SIAM Review, 37, 573- 595. doi:10.1137/1037127
[5] Biswas, S., Storey, J., & Akey, J. (2008). Mapping gene expression quantitative trait loci by singular value decomposition and indepen- dent component analysis. BMC Bioinformatics, 9, 244. doi:10.1186/1471-2105-9-244
[6] Cavalli-Sforza, L. L., Menozzi, P., & Piazza, A. (1994). The history and geography of human genes. Princeton, NJ: Princeton University Press.
[7] Chen, L., Hodgson, K. O., & Doniach, S. (1996). A lysozyme folding intermediate revealed by solution X-ray scattering. Journal of Molecular Biology, 261, 658-671. doi:10.1006/jmbi.1996.0491
[8] Clayton, D. G., Walker, N. M., Smyth, D. J., Pask, R., Cooper, J. D., Maier, L. M., Smink, L. J., Lam, A. C., Ovington, N. R., & Stevens, H. E. (2005). Population structure, differential bias and genomic con- trol in a large-scale, case-control association study. Nature Genetics, 37, 1243-1246. doi:10.1038/ng1653
[9] Fesel, C., & Coutinho, A. (1998). Dynamics of serum IgM autoreactive repertoires following immunization: strain specificity, inheritance and association with autoimmune disease susceptibility. European Journal of Immunology, 28, 3616-3629. doi:10.1002/(SICI)1521-4141(199811)28:11<3616::AID-IMMU3616>3.0.CO;2-B
[10] Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., & Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16, 906. doi:10.1093/bioinformatics/16.10.906
[11] Handley, L. J. L., Manica, A., Goudet, J., & Balloux, F. (2007). Going the distance: Human population genetics in a clinal world. TRENDS in Genetics, 23, 432-439. doi:10.1093/bioinformatics/16.10.906
[12] Holter, N. S., Mitra, M., Maritan, A., Cieplak, M., Banavar, J. R., & Fedoroff, N. V. (2000). Fundamental patterns underlying gene expression profiles: Simplicity from complexity. Proceedings of the National Academy of Sciences, 97, 8409. doi:10.1073/pnas.150242097
[13] Hyv Rinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13, 411-430. doi:10.1016/S0893-6080(00)00026-5
[14] Khan, J., Wei, J. S., Ringnér, M., Saal, L. H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C. R., & Peterson, C. (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 7, 673-679. doi:10.1038/89044
[15] Lee, A. B., Luca, D., Klei, L., Devlin, B., & Roeder, K. (2010). Discovering genetic ancestry using spectral graph theory. Genetic Epidemiology, 34, 51-59.
[16] Li, J. Z., Absher, D. M., Tang, H., Southwick, A. M., Casto, A. M., Ramachandran, S., Cann, H. M., Barsh, G. S., Feldman, M., & Cavalli- Sforza, L. L. (2008). Worldwide human relationships inferred from genome-wide patterns of variation. Science, 319, 1100. doi:10.1126/science.1153717
[17] Luca, D., Ringquist, S., Klei, L., Lee, A. B., Gieger, C., & Wichmann, H. (2008). On the use of general control samples for genome-wide association studies: genetic matching highlights causal variants. The American Journal of Human Genetics, 82, 453-463. doi:10.1016/j.ajhg.2007.11.003
[18] Mellars, P. (2006). Going east: New genetic and archaeological perspectives on the modern human colonization of Eurasia. Science, 313, 796. doi:10.1016/j.ajhg.2007.11.003
[19] Menozzi, P., Piazza, A., & Cavalli-Sforza, L. (1978). Synthetic maps of human gene frequencies in Europeans. Science, 201, 786. doi:10.1126/science.356262
[20] Novembre, J., & Stephens, M. (2008). Interpreting principal component analyses of spatial population genetic variation. Nature Genetics, 40, 646-649. doi:10.1038/ng.139
[21] Omberg, L., Golub, G. H., & Alter, O. (2007). A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies. Proceedings of the National Academy of Sciences, 104, 18371. doi:10.1073/pnas.0709146104
[22] Patterson, N., Price, A. L., & Reich, D. (2006). Population structure and eigenanalysis. PLoS Genetics, 2, e190. doi:10.1371/journal.pgen.0020190
[23] Pearson, K. LIII. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine Series 6, 2, 559-572. doi:10.1080/14786440109462720
[24] Pinhasi, R., Fort, J., & Ammerman, A. J. (2005). Tracing the origin and spread of agriculture in Europe. PLoS Biology, 3, e410. doi:10.1371/journal.pbio.0030410
[25] Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., & Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature, 38, 904- 909.
[26] Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., de Bakker, P. I., Daly, M. J., & Sham, P. C. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81, 559-575. doi:10.1086/519795
[27] Quackenbush, J. (2001). Computational analysis of microarray data. Nature Reviews Genetics, 2, 418-427. doi:10.1038/35076576
[28] Raychaudhuri, S., Stuart, J. M., & Altman, R. B. (2000). Principal components analysis to summarize microarray experiments. Application to Sporulation Time Series, 455.
[29] Reich, D., Price, A. L., & Patterson, N. (2008). Principal component analysis of genetic data. Nature Genetics, 40, 491-491. doi:10.1038/ng0508-491
[30] Richards, J. A., & Jia, X. (2006). Remote sensing digital image analysis: An introduction. Berlin: Springer Verlag.
[31] Romo, T. D., Clarage, J. B., Sorensen, D. C., & Phillips Jr, G. N. (1995). Automatic identification of discrete substates in proteins: Singular value decomposition analysis of time—Averaged crystal- llographic refinements. Proteins: Structure, Function, and Bioinformatics, 22, 311-321. doi:10.1002/prot.340220403
[32] Semino, O., Magri, C., Benuzzi, G., Lin, A. A., Al-Zahery, N., Battaglia, V., Maccioni, L., Triantaphyllidis, C., Shen, P., & Oefner, P. J. (2004). Origin, diffusion, and differentiation of Y-chromosome haplogroups E and J: Inferences on the neolithization of Europe and later migratory events in the Mediterranean area. The American Jour- nal of Human Genetics, 74, 1023-1034. doi:10.1086/386295
[33] Sokal, R. R., Oden, N. L., & Wilson, C. (1991). Genetic evidence for the spread of agriculture in Europe by demic diffusion. Nauture, 351, 143-145. doi:10.1038/351143a0
[34] Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D., & Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9, 3273.
[35] Yeung, K. Y., & Ruzzo, W. L. (2001). Principal component analysis for clustering gene expression data. Bioinformatics, 17, 763. doi:10.1093/bioinformatics/17.9.763
[36] Zhu, X., Li, S., Cooper, R. S., & Elston, R. C. (2008). A unified association analysis approach for family and unrelated samples correcting for stratification. The American Journal of Human Genetics, 82, 352- 365. doi:10.1016/j.ajhg.2007.10.009