MSA  Vol.9 No.9 , August 2018
High Temperature Deformation Behavior of TC17 Alloy
Abstract: The high temperature deformation behavior and microstructures evolution of TC17 alloy in the temperature range of 820°C - 930°C, strain rate range of 0.01 s-1 - 10 s-1 and height direction reduction of 20% - 80% have been studied by hot compressing testing. The microstructures of TC17 alloy were observed and analyzed using Olympus/PMG3 optical microscope. The flow stresses were correlated with strain rate and the temperature by the constitutive equation. The results show that the flow stress of TC17 alloy increase quickly with the strain, then decrease with a steady value. The deformation activation energy obtained in the α + β region for TC17 was 407 kJ/mol, and in the β region was 155 kJ/mol. It was also found that the degree of dynamic globularization of α phase increases with increasing strains, increasing temperature and decreasing strain rate in α + β region, the dynamic re-crystallization is obvious at low strain rate and dynamic recovery is obvious at high strain rate in β region.
Cite this paper: Wang, C. (2018) High Temperature Deformation Behavior of TC17 Alloy. Materials Sciences and Applications, 9, 732-739. doi: 10.4236/msa.2018.99053.

[1]   Huang. B.Y., Li, C.G. and Shi, L.K. (2006) China Materials Engineering: Nonferrous Metal Materials Engineering (I). Vol. IV, Chemical Industry Press, Beijing.

[2]   Momeni, A. and Dehghani, K. (2010) Characterization of Hot Deformation Behavior of 410 Martensitic Stainless Steel Using Constitutive Equations and Processing Maps. Materials Science & Engineering A: Structural Materials Properties Microstructure & Processing, 527, 5467-5473.

[3]   Hradilová, M., Montheillet, F., Fraczkiewicz, A., et al. (2013) Effect of Ca-Addition on Dynamic Recrystallization of Mg-Zn Alloy during Hot Deformation. Materials Science & Engineering A: Structural Materials Properties Microstructure & Processing, 580, 217-226.

[4]   Berdjane, D., Fares, M.L. and Lemmoui, M.B.A.N. (2012) Deformation Behavior of a Nb-Ti-V Microalloyed Steel to Achieve, the HSLA X80 Grade by Simulation with a Torsion Test and Pilot Hot Rolling, Mill. Revue de Métallurgie, 109, 465-475.

[5]   Werner, R., Schwaighofer, E., Schloffer, M., et al. (2014) Constitutive Analysis and Microstructure Evolution of the High-Temperature Deformation Behavior of an Advanced Intermetallic Multi-Phase γ-TiAl-Based Alloy. Advanced Materials Research, 922, 807-812.

[6]   Semiatin, S.L. and Jonas, J.J. (1984) Formability and Workability of Metals-Plastic Instability and Flow Localization. ASM, Metals Park, OH, 2419-2424.

[7]   Feng, L., Qu, H.L. and Zhao, Y.Q. (2004) High Temperature Deformation Behavior of TC21 Alloy. Journal of Aeronautical Materials, 24, 11-13.

[8]   Wang, R.N., Qi, Z.P. and Zhao, Y.Q. (2008) High Temperature Plastic Deformation Behavior and Processing Diagram of Ti53311S Alloy. Rare Metal Materials and Engineering, 37, 10-13.

[9]   Bai. X.F., Zhao, Y.Q., Zeng, W.D., et al. (2014) Effect of Deformation Parameters on Hot Deformation Behavior, Microstructure and Texture Evolution of TLM Titanium Alloy during Hot Compression. Rare Metal Materials and Engineering, 43, 171-176.

[10]   Hong, Q., Han, D. and Guo, P. (2017) High Temperature Rheological Properties and Microstructure Evolution of TC4-DT Alloys. Thermal Process Technology, 7, 181-182.

[11]   Luo, Y., Li, Y.Q. and Li, H. (2008) High Temperature Deformation Behavior and Flow Stress Model of TC4 Titanium Alloy. Chinese Journal of Nonferrous Metals, 18, 1395-1401.

[12]   Zhao, Y.H., Ge, P. and Zhao, Y.Q. (2009) Study on Thermal Deformation Behavior of Ti-1300 Alloy. Rare Metal Materials and Engineering, 38, 46-49.

[13]   Yu, Y.L., Pei, Z.P. and Zhao, Y.Q. (2008) Effect of Initial State on Thermal Deformation of Ti600 Titanium Alloy. Rare Metal Materials and Engineering, 37, 622-624.

[14]   McQueen, H.J., Yue, S., Ryan, N.D. and Fry, E. (1995) Hot Working Characteristics of Steels in Austenitic State. Journal of Materials Processing Technology, 53, 293-310.

[15]   Shi, H., McLaren, J., Sellars, C.M., Shahani, R. and Bolingbroke, R. (1997) Constitutive Equations for High Temperature Flow Stress of Aluminum Alloys. Materials Science and Technology, 13, 210-216.