Back
 JAMP  Vol.6 No.8 , August 2018
Path Integral Quantization of Nonconservative Systems
Abstract: In this paper nonconservative systems are investigated within the framework of Euler Lagrange equations. The solutions of these equations are used to find the principal function S, this function is used to formulate the wave function and then to quantize these systems using path integral method. One example is considered to demonstrate the application of our formalism.
Cite this paper: Jarab’ah, O. and Nawafleh, K. (2018) Path Integral Quantization of Nonconservative Systems. Journal of Applied Mathematics and Physics, 6, 1637-1641. doi: 10.4236/jamp.2018.68139.
References

[1]   Wiener, N. (1921) The Average of an Analytical Functional and the Brownian Movement. Proceedings of the National Academy of Sciences of the United States of America, 7, 294-298.
https://doi.org/10.1073/pnas.7.10.294

[2]   Dirac, P.A.M. (1933) The Lagrangian in Quantum Mechanics. Physikalische Zeitschrift der Sowjetunion, 3, 64-72.

[3]   Feynman, R.P. (1948) Space-Time Approach to Non-Relativistic Quantum Mechanics. Reviews of Modern Physics, 20, 367-387.
https://doi.org/10.1103/RevModPhys.20.367

[4]   Rabei, E. and Guler, Y. (1992) Hamilton-Jacobi Treatment of Second-Class Constraints. Physical Review A, 46, 3513-3515.
https://www.ncbi.nlm.nih.gov/m/pubmed/9908518
https://doi.org/10.1103/PhysRevA.46.3513


[5]   Pimentel, B.M. and Teixeira, R.G. (1996) Hamilton-Jacobi Formulation for Singular Systems with Second-Order Lagrangians. Il Nuovo Cimento B, 111, 841-854.
https://doi.org/10.1007/BF02749015

[6]   Pimentel, B.M. and Teixeira, R.G. (1998) Generalization of The Hamilton-Jacobi Approach for Higher-Order Singular Systems. Il Nuovo Cimento B, 113, 805-818.
https://www.sif.it/riviste/sif/ncb/econtents/1998/113/06/article/1

[7]   Muslih, S. and Guler, Y. (1997) The Feynman Path Integral Quantization of Constrained Systems. Il Nuovo Cimento B, 112, 97-107.

[8]   Muslih, S. (2001) Path Integral Formulation of Constrained Systems with Singular-Higher Order Lagrangians. Hadronic Journal, 24, 713-720.

[9]   Muslih, S.I. (2002) Quantization of Singular Systems with Second-Order Lagrangians. Modern Physics Letters A, 17, 2383-2391.
https://doi.org/10.1142/S0217732302009027

[10]   Rabei, E. (2000) On the Quantization of Constrained Systems Using Path Integral Techniques. Il Nuovo Cimento B, 115, 1159-1165.
http://adsabs.harvard.edu/abs/2000NCimB.115.1159R

[11]   Rabei, E., Nawafleh, K. and Ghassib, H. (2002) Quantization of Constrained Systems Using the WKB Approximation. Physical Review A, 66, Article ID: 024101.
https://doi.org/10.1103/PhysRevA.66.024101

[12]   Nawafleh, K., Rabei, E. and Ghassib, H. (2004) Hamilton-Jacobi Treatment of Constrained Systems. International Journal of Modern Physics A, 19, 347-354.
https://www.researchgate.net/.../228453409_Hamilton-Jacobi_Treatment_of_constrained
https://doi.org/10.1142/S0217751X04017719


[13]   Hasan, E.H., Rabei, E.M. and Ghassib, H.B. (2004) Quantization of Higher-Order Constrained Lagrangian Systems Using the WKB Approximation. International Journal of Theoretical Physics, 43, 1073-1096.
http://link.springer.com/article/10.1023/B:IJTP.0000049027.45011.37
https://doi.org/10.1023/B:IJTP.0000049027.45011.37


[14]   Jarab’ah, O., Nawafleh, K. and Ghassib, H. (2013) Canonical Quantization of Dissipative Systems. European Scientific Journal, 9, 132-154.

[15]   Hasan, E., Jarab’ah, O. and Nawafleh, K. (2014) Path Integral Quantization of Dissipative Systems. European Scientific Journal, 10, 308-314.
http://www.eujournal.org/index.php/esj/article/download/3460/3223

[16]   Jarab’ah, O. (2018) Path Integral Quantization of Regular Lagrangian. Applied Physics Research, 10, 9-13.
http://www.ccsenet.org/journal/index.php/apr/article/download/72127/40058
https://doi.org/10.5539/apr.v10n1p9


[17]   Goldstein, H. (1980). Classical Mechanics. 2nd Edition, Addison-Wesley, Boston.

[18]   Jarab’ah, O., Nawafleh, K. and Ghassib, H. (2013) A Hamilton-Jacobi Treatment of Dissipative Systems. European Scientific Journal, 9, 70-81.
http://www.eujournal.org/index.php/esj/article/download/1946/1888

[19]   Griffiths, D.J. (1995) Introduction to Quantum Mechanics. 2nd Edition, Prentice Hall, Upper Saddle River, New Jersey.

 
 
Top