JMP  Vol.2 No.11 , November 2011
Electromagnetic Radiation Reaction and Stability of the Hydrogen-Like Atoms
Author(s) Mohsen Dehghani
Based on a suitable linear combination of the physical and un-physical electromagnetic potentials, the radiation reaction potentials have been calculated. Through the near zone expansion of the potentials, it has been shown that in either of the relativistic and non-relativistic cases the outgoing (radiated) energy of the electrons orbiting the nucleus is substituted by incoming (electromagnetic radiation reaction) energy. This means that energy is conserved and the classical hydrogen-like atoms are stable.

Cite this paper
nullM. Dehghani, "Electromagnetic Radiation Reaction and Stability of the Hydrogen-Like Atoms," Journal of Modern Physics, Vol. 2 No. 11, 2011, pp. 1415-1419. doi: 10.4236/jmp.2011.211174.
[1]   H. A. Lorentz, “La theorie electromagnetique de Maxwell et son application aux corps mouvants,” Archives néerlandaises des Sciences exactes er naturelles, Vol. 25, 1892, pp. 363-552.

[2]   M. Abraham and R. Becker, “Theorie der Elektrizitat,” Vol. II, Teubner, Leipzig, 1905.

[3]   P. A. M. Dirac, “Classical Theory of Radiative Electrons,” Proceeding of the Royal Society London A, Vol. 167, 1938, 148-169. doi:10.1098/rspa.1938.0124

[4]   E. Poisson, “An Introduction to the Lorentz-Dirac Equation,” 1999. arXiv:gr-qc/9912045

[5]   B. S. De Witt and R. Brehme, “Radiation Damping in a Gravitational Field,” Annals of Physics, Vol. 9, No. 2, 1960, pp. 220-259. doi:10.1016/0003-4916(60)90030-0

[6]   J. Hobbs, “A Vierbein Formalism of Radiation Damping,” Annals of Physics, Vol. 47, No. 1, 1968, pp. 141- 165. doi:10.1016/0003-4916(68)90231-5

[7]   F. Rohrlich, “The Correct Equation of Motion of a Classical Point Charge,” Physics Letters A, Vol. 283, No. 5-6, 2001, pp. 276-278. doi:10.1016/S0375-9601(01)00264-X

[8]   J. A. Heras, “The Radiation Reaction Force on an Electron Reexamined,” Physics Letters A, Vol. 314, No. 4, 2003, pp. 272-277. doi:10.1016/S0375-9601(03)00907-1

[9]   A. Higuchi and P. J. Walker, “Classical and Quantum Radiation Reaction in Conformally Flat Spacetime,” Physical Review D, Vol. 79, No. 10, 2009, p. 105023. doi:10.1103/PhysRevD.79.105023

[10]   C. R. Gally and M. Tiglio, “Radiation Reaction and Gravitational Waves in the Effective Field Theory Approach,” Physical Review D, Vol. 79, No. 12, 2009, p. 124027. doi:10.1103/PhysRevD.79.124027

[11]   C. Harvey, T. Heinzl, N. Iji and K. Langfeld, “Covariant Worldline Numerics for Charge Motion with Radiation Reaction,” Physical Review D, Vol. 83, No. 7, 2011, p. 076013. doi:10.1103/PhysRevD.83.076013

[12]   A. Higuchi and G. D. R. Martin, “Radiation Reaction on Charged Particles in Three-Dimensional Motion in Classical and Quantum Electrodynamics,” Physical Review D, Vol. 73, No. 2, 2006, p. 025019. doi:10.1103/PhysRevD.73.025019

[13]   A. Higuchi and G. D. R. Martin, “Quantum Radiation Reaction and the Green’s Function Decomposition,” Physical Review D, Vol. 74, No. 12, 2006, p. 125002. doi:10.1103/PhysRevD.74.125002

[14]   A. Higuchi and P. J. Walker, “Quantum Corrections to the Larmor Radiation Formula in Scalar Electrodynamics,” Physical Review D, Vol. 80, No. 10, 2009, p. 105019.

[15]   F. Rohrlich, “Dynamics of a Classical Quasi-Point Charge,” Physics Letters A, Vol. 303, No. 5-6, 2002, pp. 307-310. doi:10.1016/S0375-9601(02)01311-7

[16]   E. Poisson, “The Motion of Point Particles in Curved Spacetime,” Living Reviews in Relativity, Vol. 7, 2004, p. 6.

[17]   J. D. Jackson, “Classical Electrodynamics,” Third Edition, John Wiley and Sons, Inc., New York, 1982.

[18]   J. D. Griffiths, “Introduction to Electrodynamics,” Second Edition, New Delhi, 1982.