JMP  Vol.2 No.11 , November 2011
Multiple-State Quantum Carnot Engine
ABSTRACT
A multiple-state quantum Carnot engine based on single particle in one dimensional potential well is evaluated. The general forms of adiabatic and isothermal force as well as work are given. We apply them first to the simplest case of two-state system, and then to three-state and general n-state system. The first isothermal expansion starts from single ground state and cease to single highest state. In Addition to the simplest case, isothermal expansions may terminate not to highest state but an intermediate state but with the same of the total expansion. The result is that the efficiency of the multi-state machine could be enhanced by reducing the volume of isothermal expansion for the same of the total volume expansion.

Cite this paper
nullE. Latifah and A. Purwanto, "Multiple-State Quantum Carnot Engine," Journal of Modern Physics, Vol. 2 No. 11, 2011, pp. 1366-1372. doi: 10.4236/jmp.2011.211169.
References
[1]   K. Stowe, “An Introduction to Thermodynamics and Statistical Mechanics,” 2nd Edition, Cambridge Univer- sity, Cambridge, 2007.

[2]   H. E. D. Scovil and E. O. Schul-DuBois, “Three-Level Masers as Heat Engines,” Physical Review Letters, Vol. 2, No. 6, 1959, pp. 262-263. doi:10.1103/PhysRevLett.2.262

[3]   B. K. Konyukhov and A. M. Prokhorov, “Второе начало термодинамики и квантовые генераторы с тепловым возбуждением,” UspekhiFiz. Nauk, Vol. 119, 1976, pp. 541-550. doi:10.3367/UFNr.0119.197607f.0541

[4]   A. E. Allahverdyan, R. S. Johal and G. Mahler, “Work Extremum Principle: Structure and Function of Quantum Heat Engines,” 2007, arXiv: 0709.4125v1.

[5]   H. T. Quan, P. Zhang and C. P. Sun, “Quantum Heat Engine with Multi-Level Quantum Systems,” Physical Review E, Vol. 72, No. 5, 2005, p. 056110. doi:10.1103/PhysRevE.72.056110

[6]   H. T. Quan, P. Zhang and C. P. Sun, “Quantum-Classical Transition of Photon-Carnot Engine Induced by Quantum Decoherence,” Physical Review E, Vol. 73, No. 3, 2006, p. 036122.doi:10.1103/PhysRevE.73.036122

[7]   H. T. Quan, Y.-X., Liu, C. P. Sun and F. Nori, “Quantum Thermodynamic Cycles and Quantum Heat Engines,” Physical Review E, Vol. 76, No. 3, 2007, p. 031105. doi:10.1103/PhysRevE.76.031105

[8]   H. T. Quan, “Quantum Thermodynamic Cycles and Quan- tum Heat Engines (II),” Physical Review E, Vol. 79, No. 4, 2009, p. 041129.doi:10.1103/PhysRevE.79.041129

[9]   M. O. Scully, “The Quantum Afterburner: Improving the Efficiency of an Ideal Heat Engine,” Physical Review Letters, Vol. 88, No. 5, 2002, p. 050602 doi:10.1103/PhysRevLett.88.050602

[10]   R. Dillenschneider and E. Lutz, “Improving Quantum Carnot Engine with Quantum Correlation,” 2008. arXiv:0803.4067v1.

[11]   C. M. Bender, D. C. Broody and B. K. Meisner, “Quan- tum Mechanical Carnot Engine,” Journal of Physics, Vol. 33, No. 24, 2000, p. 4427.

[12]   T. D. Kieu, “Quantum Heat Engines, The Second Law and Maxwell’s Demon,” European Physical Journal D, Vol. 39, No. 1, 2006, pp. 115-128. doi:10.1140/epjd/e2006-00075-5

 
 
Top