Back
 JBM  Vol.6 No.8 , August 2018
In Vitro Activity of Squaramides and Acyclic Polyamine Derivatives against Trophozoites and Cysts of Acanthamoeba castellanii
Abstract: Pathogenic strains of Acanthamoeba cause keratitis (AK), granulomatous amoebic encephalitis (GAE), amoebic pneumonitis (AP), and skin infection in human and animals. The treatment of an Acanthamoeba infection is invariably very difficult and not always effective, and compounds that are amebicidic or amebistatic are frequently toxic and/or irritating for humans. Squaramides and polyamine derivatives have been demonstrated to have antitumor and antiprotozoal activity. The aim of this study was to investigate the activity of 5 squaramides and 5 acyclic polyamines against trophozoites and cysts of A. castellanii Neff. Amoebicidal activity against the trophozoites and cytotoxicity against Vero cells were evaluated with a colorimetric assay, using Alamar Blue?, and chlorhexidine digluconate was assayed as the reference drug. The squaramides 3 and 5 and the acyclic polyamine 6 appeared to be the most active against the trophozoites and their cytotoxicity was low, showing selectivity indexes of 28.3, 26, and 25.7, respectively, similar to the control drug, chlorhexidine digluconate (27.6). But only the squaramide 3 showed complete cysticidal activity at the concentrations of 100 and 200 μM, as the chlorhexidine digluconate. Further studies of the mechanism of action and in vivo assays are needed, but squaramide 3 could be used for developing novel therapeutic approaches against Acanthamoeba infections.
Cite this paper: Rosales, M. , Ximenis, M. , Costa, A. , Rotger, C. , Romero, D. , Olmo, F. , Delgado, E. , Clares, M. , García-España, E. , Marín, C. and Sánchez, M. (2018) In Vitro Activity of Squaramides and Acyclic Polyamine Derivatives against Trophozoites and Cysts of Acanthamoeba castellanii. Journal of Biosciences and Medicines, 6, 1-14. doi: 10.4236/jbm.2018.68001.
References

[1]   De Jonckheere, J.F. (1991) Ecology of Acanthamoeba. Clinical Infectious Diseases, 13, S385-S387.
https://doi.org/10.1093/clind/13.Supplement_5.S385

[2]   Kilvington, S. and White, D.G. (1994) Acanthamoeba: Biology, Ecology and Human Disease. Reviews in Medical Microbiology, 5, 12-20.
https://doi.org/10.1097/00013542-199401000-00003

[3]   Khan, N.A. and Paget, T.A. (2002) Molecular Tools for Speciation and Epidemiological Studies of Acanthamoeba. Current Microbiology, 44, 444-449.
https://doi.org/10.1007/s00284-001-0050-4

[4]   Khan, N.A. (2009) Acanthamoeba Biology and Pathogenesis. Caister Academic Press, Chicago, 2-16.

[5]   Chappell, C.L., Wright, J.A., Coletta, M. and Newsome, A.L. (2001) Standardized Method of Measuring Acanthamoeba Antibodies in Sera from Healthy Human Subjects. Clinical and Diagnostic Laboratory Immunology, 8, 724-730.

[6]   Mahgoub, M.A. (2010) Acanthamoeba Keratitis. Parasitologists United Journal, 3, 9-18.

[7]   Rusciano, G., Capriglione, P., Pesce, G., Del Prete, S., Cennamo, G., Di Cave, D., Cerulli, L. and Sasso, A. (2013) Raman Microspectroscopy Analysis in the Treatment of Acanthamoeba Keratitis. PLoS ONE, 8, e72127.
https://doi.org/10.1371/journal.pone.0072127

[8]   Naginton, J., Watson, P.G., Playfair, T.J., McGill, J., Jones, B.R. and Steele, A.D. (1974) Amoebic Infection of the Eye. The Lancet, 28, 1537-1540.
https://doi.org/10.1016/S0140-6736(74)90285-2

[9]   Khan, N.A. (2006) Acanthamoeba: Biology and Increasing Importance in Human Health. FEMS Microbiology Reviews, 30, 564-595.
https://doi.org/10.1111/j.1574-6976.2006.00023.x

[10]   Visvesvara, G.S., Moura, H. and Schuster, F.L. (2007) Pathogenic and Opportunistic Free-Living Amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri and Sappinia diploidea. FEMS Immunology & Medical Microbiology, 50, 1-26.
https://doi.org/10.1111/j.1574-695X.2007.00232.x

[11]   Sheng, W.H., Hung, C.C., Huang, H.H., Liang, S., Cheng, Y.J., Ji, D.D. and Chang, S.C. (2009) First Case of Granulomatous Amebic Encephalitis Caused by Acanthamoeba castellanii in Taiwan. The American Journal of Tropical Medicine and Hygiene, 81, 277-279.

[12]   Brown, M.R. and Barker, J. (1999) Unexplored Reservoirs of Pathogenic Bacteria: Protozoa and Biofilms. Trends in Microbiology, 7, 46-50.
https://doi.org/10.1016/S0966-842X(98)01425-5

[13]   Abd, H.T., Johansson, I., Golovoliov, G., Sandstrom, A. and Forsman, M. (2003) Survival and Growth of Francisella tularensis in Acanthamoeba castellanii. Applied and Environmental Microbiology, 69, 600-606.
https://doi.org/10.1128/AEM.69.1.600-606.2003

[14]   Greub, R.J. and Raoult, D. (2004) Microorganisms Resistant to Free-Living Amoebae. Clinical Microbiology Reviews, 17, 413-433.
https://doi.org/10.1128/CMR.17.2.413-433.2004

[15]   Martin-Navarro, C.M, Lopez-Arencibia, A., Lorenzo-Morales, J., Oramas-Royo, S., Hernandez-Molina, R., Estevez-Braun, A., Ravelo, A.G., Valladares, B. and Pinero, J.E. (2010) Acanthamoeba castellanii Neff: In Vitro Activity against the Trophozoite Stage of a Natural Sesquiterpene and a Synthetic Cobalt(II)-Lapachol Complex. Experimental Parasitology, 126,106-108.
https://doi.org/10.1016/j.exppara.2009.12.015

[16]   Martín-Navarro, C.M., López-Arencibia, A., Arnalich-Montiel, F., Valladares, B., Pinero, J.E. and Lorenzo-Morales, J. (2013) Evaluation of the in Vitro Activity of Commercially Available Moxifloxacin and Voriconazole Eye-Drops against Clinical Strains of Acanthamoeba. Graefe’s Archive for Clinical and Experimental Ophthalmology, 251, 2111-2117.
https://doi.org/10.1007/s00417-013-2371-y

[17]   Borase, H.B., Patil, C.D., Sauter, I.P., Rott, M.B. and Patil, S.V. (2013) Amoebicidal Activity of Phytosynthesized Silver Nanoparticles and Their in Vitro Cytotoxicity to Human Cells. FEMS Microbiology Letters, 345, 127-131.
https://doi.org/10.1111/1574-6968.12195

[18]   Derda, M., Thiem, B., Budwianoski, J., Hada, E., Wojt, W.J. and Wojkkowiak-Giera, A. (2013) The Evaluation of Amebicidal Activity of Eryngium Planum Extracts. Acta Poloniae Pharmaceutica Drug Research, 70, 1027-1034.

[19]   Debnath, A., Tunac, J.B., Silva-Olivares, A., Galindo-Gómez, S., Shibayama, M. and McKerrow, J.H. (2014) In Vitro Efficacy of Corifungin against Acanthamoeba castellanii Trophozoites and Cysts. Antimicrobial Agents and Chemotherapy, 58, 1523-1528.
https://doi.org/10.1128/AAC.02254-13

[20]   Kulsoom, H., Baig, A.M., Siddiqui, R. and Khan, N.A. (2014) Combined Drug Therapy in the Management of Granulomatous Amoebic Encephalitis Due to Acanthamoeba spp. and Balamuthia mandrillaris. Experimental Parasitology, 145, S115-S120.
https://doi.org/10.1016/j.exppara.2014.03.025

[21]   Lovieno, A., Miller, D., Ledee, D.R. and Alfonso, E.C. (2014) Cysticidal Activity of Antifungals against Different Genotypes of Acanthamoeba. Antimicrobial Agents and Chemotherapy, 58, 5626-5628.
https://doi.org/10.1128/AAC.02635-14

[22]   Sifaoui, I., López-Arencibia, A., Ticona, J.C., Martín-Navarro, C.M., Reyes-Batlle, M., Mejri, M., Lorenzo-Morales, J., Jiménez, A.I., Valladares, B., Lopez-Bazzocchi, I., Abderabba, M. and Pinero, J. (2014) Bioassay Guided Isolation and Identification of Anti-Acanthamoeba Compounds from Tunisian Olive Leaf Extracts. Experimental Parasitology, 145, 111-114.
https://doi.org/10.1016/j.exppara.2014.02.018

[23]   Heredero-Bermejo, I., Copa-Patino, J.L., Soliveri, J., Fuentes-Paniagua, E., De la Mata, F.J., Gomez, R. and Perez-Serrano, J. (2015) Evaluation of the Activity of New Cationic Carbosilane Dendrimers on Trophozoites and Cysts of Acanthamoeba polyphaga. Parasitology Research, 114, 473-486.
https://doi.org/10.1007/s00436-014-4205-1

[24]   Kuzma, L., Derda, M., Hadas, E. and Wysokinska, H. (2015) Abietane Diterpenoids from Salvia sclarea Transformed Roots as Growth Inhibitors of Pathogenic Acanthamoeba spp. Parasitology Research, 114, 323-327.
https://doi.org/10.1007/s00436-014-4211-3

[25]   Villalonga, P., Fernandez de Mattos, S., Ramis, G., Obrador-Hevia, A., Sampedro, A., Rotger, C. and Costa, A. (2012) Cyclosquaramides as Kinase Inhibitors with Anticancer Activity. ChemMedChem, 7, 1472-1480.
https://doi.org/10.1002/cmdc.201200157

[26]   Kumar, S.P., Gloria, P.M.C., Goncalves, L.M., Gut, J., Rosenthal, J., Moreira, R. and Santos, M.M. (2012) Squaric Acid: A Valuable Scaffold for Developing Antimalarials. Medicinal Chemistry Communications, 3, 489-493.
https://doi.org/10.1039/c2md20011b

[27]   Olmo, F., Rotger, C., Ramírez-Macías, I., Martínez, L., Marín, C., Carreras, L., Urbanová, K., Vega, M., Chaves-Lemaur, G., Sampedro, A., Rosales, M.J., Sánchez-Moreno, M. and Costa, A. (2014) Synthesis and Biological Evaluation of NN’-Squaramides with High in Vivo Efficacy and Low Toxicity: Toward a Low-Cost Drug against Chagas Disease. Journal of Medicinal Chemistry, 57, 987-999.
https://doi.org/10.1021/jm4017015

[28]   Sanchez-Moreno, M., Marín, C., Navarro, P., Lamarque, L., García-Espana, E., Miranda, C., Huertas, O., Olmo, F., Gomez-Contreras, F., Pitarch, J. and Arrebola, F. (2012) In Vitro and in Vivo Trypanosomycidal Activity of Pyrazole-Containing Macrocyclic and Macrobicyclic Polyamines: Their Action on Acute and Chronic Phases of Chagas Disease. Journal of Medicinal Chemistry, 55, 4231-4243.

[29]   Willaert, E. (1971) Isolement et culture in Vitro des amibes du genre Naegleria. Annales de la Société Belge de Médecine Tropicale, 51, 701-708.

[30]   Cordingley, J.S., Wills, R.A. and Villemez, C.L. (1996) Osmolarity Is an Independent Trigger of Acanthamoeba castellanii Differentiation. Journal of Cellular Biochemistry, 61, 167-171.
https://doi.org/10.1002/(SICI)1097-4644(19960501)61:2<167::AID-JCB1>3.0.CO;2-S

[31]   McBride, J., Ingram, P.R. and Henríquez, F.L. (2005) Development of Colorimetric Microtiter Plate Assay for Assessment of Antimicrobials against Acanthamoeba. Journal of Clinical Microbiology, 43, 629-634.
https://doi.org/10.1128/JCM.43.2.629-634.2005

[32]   Seal, D.V. (2003) Acanthamoeba Keratitis Update-Incidence, Molecular Epidemiology and New Drugs for Treatment. Eye, 17, 893-905.
https://doi.org/10.1038/sj.eye.6700563

[33]   Walochnik, J., Picher, O., Aspock, C., Ullmann, M., Sommer, R. and Aspock, H. (1999) Interactions of “Limax Amoebae” and Gram-Negative Bacteria: Experimental Studies and Review of Current Problems. Tokai Journal of Experimental and Clinical Medicine, 23, 273-278.

[34]   Schuster, F.L. and Visvevara, G.S. (2004) Opportunistic Amoebae: Challenges in Prophylaxis and Treatment. Drug Resistance Updates, 7, 41-51.
https://doi.org/10.1016/j.drup.2004.01.002

[35]   Bang, S., Edell, E., Eghrari, A.O. and Gottsch, J.D. (2010) Treatment with Voriconazole in 3 Eyes with Resistant Acanthamoeba Keratitis. American Journal of Ophthalmology, 149, 66-69.
https://doi.org/10.1016/j.ajo.2009.08.004

[36]   Ferrari, G., Matuska, A. and Rama, P. (2011) Double-Biguanide Therapy for Resistant Acanthamoeba Keratitis. Case Reports in Ophthalmology, 2, 338-342.
https://doi.org/10.1159/000334270

[37]   Yao, S. (2014) FDA Approves Impavido to Treat Tropical Disease Leishmaniasis. FDA News Release. U.S. Food and Drug Administration.

[38]   Cope, J.R. (2013) Investigational Drug Available Directly from CDC for the Treatment of Infections with Free-Living Amebae. Morbidity and Mortality Weekly Report, 62, 666.

[39]   CDC (2014) Naegleria fowleri—Primary Amebic Meningoencephalitis (PAM). Centers for Disease Control and Prevention.

[40]   Gholipour, B. (2013) Brain-Eating Amoeba: How One Girl Survived.

[41]   Goldschmidt, D. and Scutti, S. (2016) Rare Recovery: Florida Teen Survives Brain-Eating Amoeba.

[42]   Sato, K., Seio, K. and Sekine, M.J. (2002) Squaryl Group as a New Mimic of Phosphate Group in Modified Oligodeoxynu-cleotides: Synthesis and Properties of New Oligodeoxynucleotide Analogues Containing an Internucleotidic Squaryldiamide Linkage. American Chemical Society, 124, 12715-12724.
https://doi.org/10.1021/ja027131f

[43]   Sato, K., Tawarada, R., Seio, K. and Sekine, M. (2004) Synthesis and Structural Properties of New Oligodeoxynucleotide Analogues Containing a 2,5-Internucleotidic Squaryldiamide Linkage Capable of Formation of a Watson-Crick Base Pair with Adenine and a Wobble Base Pair with Guanine at the 3-Downstream Junction Site. European Journal of Organic Chemistry, 2142-2150.
https://doi.org/10.1002/ejoc.200300682

[44]   Nagwa, M.E., Khadiga, A.I., Sabah, A.A. and Hafez, M.H. (2012) In Vitro Amoebicidal Activity of Etanol Extracts of Arachis hypogaea L., Curcuma longa L. and Pancratium maritimum L. on Acanthamoeba castellanii cysts. Parasitology Research, 110, 1985-1992.
https://doi.org/10.1007/s00436-011-2727-3

[45]   Ehlers, N. and Hjortdal, J. (2004) Are Cataract and Iris Atrophy Toxic Complications of Medical Treatment of Acanthamoeba Keratitis? Acta Ophthalmologica Scandinavica, 82, 228-231.
https://doi.org/10.1111/j.1600-0420.2004.00237.x

[46]   Banich, A.M., Bu, P., Jacob, G., Fox, I., Zhang, X., Perlman, J.I. and Bouchar, C. (2003) Penetration of Chlorhexidine into the Rabbit Anterior Chamber Following Topical Administration. Investigative Ophthalmology & Visual Science, 44, U317.

 
 
Top