Back
 JCPT  Vol.8 No.3 , July 2018
Crystallization of Curcumin and Cinnamic Acid from Aqueous Solutions of Hydrotropes
Abstract: Batch crystallization studies of curcumin from hydrotropic solutions of sodium cumenesulphonate (NaCS) and of cinnamic acid from a photosensitive hydrotropic medium of sodium cinnamate (Na-CIN) were carried out, in an agitated reactor for the effect of alternate heating and cooling cycles on crystal morphology. The crystal characterization by Scanning electron microscopy (SEM) and crystal size distribution (CSD) showed formation of spheroidal curcumin crystals while cinnamic acid formed porous aggregates when subjected to thermal cycles. The UV irradiation of cinnamic acid however showed no formation of the aggregates. The type of hydrotrope used and the initial crystal morphologies of curcumin and cinnamic acid are shown to be important factors to result in a different behaviour of the crystal morphology upon thermal cycles. The CSD data were effectively used for estimation of nucleation and growth rate parameters.
Cite this paper: Rathi, N. and G. Gaikar, V. (2018) Crystallization of Curcumin and Cinnamic Acid from Aqueous Solutions of Hydrotropes. Journal of Crystallization Process and Technology, 8, 73-87. doi: 10.4236/jcpt.2018.83005.
References

[1]   Roy, B.K. and Moulik, S.P. (2002) Functions of Hydrotropes (Sodium Salicylate, Proline, Pyrogallol, Resorcinol and Urea) in Solution with Special Reference to Amphiphile Behaviors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 203, 155-166.
https://doi.org/10.1016/S0927-7757(01)01099-8

[2]   Jain, P., Goel, A., Sharma, S. and Parmar, M. (2010) Solubility Enhancement Techniques with Special Emphasis on Hydrotrophy. International Journal Of Pharma Professional’s Research, 1, 34-45.

[3]   Agarwal, M. and Gaikar, V.G. (1992) Extractive Separations Using Hydrotropes. Separation Science and Technology, 2, 79-84.

[4]   Balasubramanian, D., Srinivas, V., Gaikar, V.G. and Sharma, M.M. (1989) Aggregation Behavior of Hydrotropic Compounds in Aqueous Solution. The Journal of Physical Chemistry, 93, 3865-3870.
https://doi.org/10.1021/j100346a098

[5]   Girishpai, K., Divya, S., Reddy, M.S., Kumar, L. and Vamshi, K.T. (2014) Solubility Enhancement of Norfloxacin by Hydrotropy Technique. International Journal of Pharmacy and Pharmaceutical Sciences, 6, 395-397.

[6]   Jyotsana, R.M., Kiran, T.P. and Kamal, D. (2015) Solubility Enhancement Studies on Lurasidone Hydrochloride Using Mixed Hydrotropy. International Journal of Pharmaceutical Investigation, 5, 114-120.
https://doi.org/10.4103/2230-973X.153390

[7]   Phulzalke, S.B., Kate, B.A. and Bagade, M.Y. (2015) Solubility Enhancement of Telmisartan Using Mixed Hydrotropy Approach. Asian Journal of Biomedical and Pharmaceutical Sciences, 5, 37-39.

[8]   Negi, A.S. and Gaikar, V.G. (2009) Partitioning of o/p-Nitrophenols in the Presence of Hydrotropes in Aqueous Solutions. Separation Science and Technology, 44, 734-752.
https://doi.org/10.1080/01496390802625768

[9]   Raynaud-Lacroze, P.O. and Tavare, N.S. (1993) Separation of 2-Naphthol: Hydrotropy and Precipitation. Industrial & Engineering Chemistry Research, 32, 685-691.
https://doi.org/10.1021/ie00016a015

[10]   Colonia, E.J., Dixit, A.B. and Tavare, N.S. (1998) Separation of Chlorobenzoic Acids through Hydrotropy. Industrial & Engineering Chemistry Research, 37, 1956-1969.
https://doi.org/10.1021/ie970686c

[11]   Dandekar, D.V. and Gaikar, V.G. (2003) Hydrotropic Extraction of Curcuminoids from Turmeric. Separation Science and Technology, 38, 1185-1215.
https://doi.org/10.1081/SS-120018130

[12]   Dandekar, D.V., Jayaprakasha, G.K. and Bhimanagouda, S.P. (2008) Simultaneous Extraction of Bioactive Limonoid Aglycones and Glucoside from Citrus aurantium L. Using Hydrotropy. Food Chemistry, 109, 515-520.
https://doi.org/10.1016/j.foodchem.2007.12.071

[13]   Ramesh, N., Jayakumar, C. and Gandhi, N.N. (2009) Effective Separation of Petro Products through Hydrotropy. Chemical Engineering & Technology, 32, 129-133.
https://doi.org/10.1002/ceat.200800328

[14]   Mohanasundaram, R., Jayakumar, C. and Gandhi, N.N. (2010) Separation of Styrene-Ethyl Benzene Mixture through Hydrotropy. International Journal of Applied Science and Engineering, 8, 1-9.

[15]   Subbarao, C.V., Chakravarthy, I.P.K., SaiBharadwaj, A.V.S.L. and Prasad, K.M.M. (2012) Functions of Hydrotropes in Solutions. Chemical Engineering & Technology, 35, 225-237.
https://doi.org/10.1002/ceat.201100484

[16]   Tavare, N.S. and Gaikar, V.G. (1991) Precipitation of Salicyclic Acid: Hydrotropy and Reaction. Industrial & Engineering Chemistry Research, 30, 722-728.
https://doi.org/10.1021/ie00052a015

[17]   Dandekar, D.V. and Gaikar, V.G. (2003) Precipitation of Curcuminoids from Hydrotrope Solution: Crystal Nucleation and Growth Kinetics from Batch Experiments. Separation Science and Technology, 38, 3625-3644.
https://doi.org/10.1081/SS-120024221

[18]   Gaulkar, S.U. and Gaikar, V.G. (2004) Precipitation of Piperine from Hydrotropic Solutions: Study of Crystal Nucleation and Growth Kinetics from Batch Experiments. Separation Science and Technology, 39, 3431-3452.
https://doi.org/10.1081/SS-200034344

[19]   Ramadasn, K., Bhanumathy, P., Nirmala, K. and George, M.C. (1985) Potential Anticancer Activity of Turmeric (Curcuma longa). Cancer Letters, 29, 197-202.
https://doi.org/10.1016/0304-3835(85)90159-4

[20]   Revathy, S., Elumalai, S., Benny, M. and Antony, B. (2011) Isolation, Purification and Identification of Curcuminoids from Turmeric (Curcuma longa L.) by Column Chromatography. Journal of Experimental Biology, 2, 21-25.

[21]   Teixeira, C.C.C., MendonÇa, L.M., Bergamaschi, M.M., Queiroz, R.H.C., Souza, G.E.P., Antunes, L.M.G. and Freitas, L.A.P. (2016) Microparticles Containing Curcumin Solid Dispersion: Stability, Bioavailability and Anti-Inflammatory Activity. AAPS PharmSciTech, 17, 252-261.
https://doi.org/10.1208/s12249-015-0337-6

[22]   He, Y., Huang, Y. and Cheng, Y. (2010) Structure Evolution of Curcumin Nanoprecipitation from a Micromixer. Crystal Growth & Design, 10, 1021-1024.
https://doi.org/10.1021/cg9009916

[23]   Thakuria, R., Delori, A., Jones, W., Lipert, M.P., Roy, L. and Rodriguez-Horned, N. (2013) Pharmaceutical Cocrystals and Poorly Soluble Drugs. International Journal of Pharmaceutics, 453, 101-125.
https://doi.org/10.1016/j.ijpharm.2012.10.043

[24]   Thorat, A.A. and Dalvi, S.V. (2015) Solid-State Phase Transformations and Storage Stability of Curcumin Polymorphs. Crystal Growth & Design, 15, 1757-1770.
https://doi.org/10.1021/cg501814q

[25]   Lee, E.J., Kim, S.R., Kim, J. and Kim, Y.C. (2002) Hepatoprotective Phenylpropanoids from Scrophularia buergeriana Roots against CCl4-Induced Toxicity: Action Mechanism and Structure-Activity Relationship. Planta Medica, 68, 407-411.
https://doi.org/10.1055/s-2002-32081

[26]   Natella, F., Nardini, M., Di Felice, M. and Scaccini, C. (1999) Benzoic and Cinnamic Acid Derivatives as Antioxidants : Structure-Activity Relation. Journal of Agricultural and Food Chemistry, 47, 1453-1459.
https://doi.org/10.1021/jf980737w

[27]   Liu, I.M., Hsu, F.L., Chen, C.F. and Cheng, J.T. (2000) Antihyperglycemic Action of Isoferulic Acid in Streptozotocin-Induced Diabetic Rats. British Journal of Pharmacology, 129, 631-636.
https://doi.org/10.1038/sj.bjp.0703082

[28]   Devendra, L.P. and Gaikar, V.G. (2012) Is Sodium Cinnamate a Photos Witch Able Hydrotrope? Journal of Molecular Liquids, 165, 71-77.
https://doi.org/10.1016/j.molliq.2011.10.010

[29]   Das, S. and Paul, S. (2016) Computer Simulation Studies of the Mechanism of Hydrotrope-Assisted Solubilization of a Sparingly Soluble Drug Molecule. The Journal of Physical Chemistry B, 120, 3540-3550.
https://doi.org/10.1021/acs.jpcb.5b11902

[30]   Jagannathan, R., Abraham, P.M. and Poddar, P. (2012) Temperature-Dependent Spectroscopic Evidences of Curcumin in Aqueous Medium: A Mechanistic Study of Its Solubility and Stability. The Journal of Physical Chemistry B, 116, 14533-14540.
https://doi.org/10.1021/jp3050516

[31]   Kurien, B.T., Singh, A., Matsumoto, H. and Scofield, R.H. (2007) Improving the Solubility and Pharmacological Efficacy of Curcumin by Heat Treatment. ASSAY and Drug Development Technologies, 5, 567-576.
https://doi.org/10.1089/adt.2007.064

[32]   Sreenivasan, D., Jayakumar, C. and Gandhi, N.N. (2010) Effect of Hydrotropes on Solubility and Mass Transfer Co-Efficient of Curcuminoids. Journal of Pharmacy Research, 3, 2170-2171.

[33]   Rahman, S.M.H., Telny, T.C., Ravi, T.K. and Kuppusamy, S. (2009) Role of Surfactant and pH in Dissolution of Curcumin. Indian Journal of Pharmaceutical Sciences, 71, 139-142.
https://doi.org/10.4103/0250-474X.54280

[34]   Srinivas, V., Rodley, G.A., Ravikumar, K., Robinson, W.T., Turnbull, M.M. andBalasubramanian, D. (1997) Molecular Organization in Hydrotrope Assemblies. Langmuir, 13, 3235-3239.
https://doi.org/10.1021/la9609229

[35]   Rodriguez-Hornedo, N. and Murphy, D. (2004) Surfactant-Facilitated Crystallization of Dihydrate Carbamazepine during Dissolution of Anhydrous Polymorph. Journal of Pharmaceutical Sciences, 93, 449-460.
https://doi.org/10.1002/jps.10496

[36]   Kaival, P., Kulkarni, P.K., Dixit, M. and Kni, A.G. (2011) Influence of Surfactants on Crystal Form of Mefenamic Acid. Thai Journal of Pharmaceutical Sciences, 35, 40-50.

[37]   Ahmed, M.A., Rhgigh, A.M. and Shakeel, F. (2009) Effect of Surfactants on the Crystal Properties and Dissolution Behavior of Aspirin. Asian Journal of Research in Chemistry, 2, 202-206.

[38]   Geetha, K.K., Tavare, N.S. and Gaikar, V.G. (1991) Separation of o and p Chloronitrobenzenes through Hydrotropy. Chemical Engineering Communications, 102, 211-224.
https://doi.org/10.1080/00986449108910857

[39]   Raman, G. and Gaikar, V.G. (2002) Extraction of Piperine from Piper Nigrum (Black Pepper) by Hydrotropic Solubilization. Industrial & Engineering Chemistry Research, 41, 2966-2976.
https://doi.org/10.1021/ie0107845

[40]   Sharma, R.A. and Gaikar, V.G. (2012) Hydrotropic Extraction of Reserpine from Rauwolfiavomitoria Roots. Separation Science and Technology, 47, 827-833.
https://doi.org/10.1080/01496395.2011.635623

[41]   Volmer, M. and Weber, A.Z. (1926) Nucleus Formation in Supersaturated Systems. Zeitschrift für Physikalische Chemie, 119, 277-301.

[42]   Mullin, J.W. (2001) Crystallization. 4th Edition, Butterworth-Heinemann, Woburn.

[43]   Randolph, A.D. and Larson, M.A. (1986) Theory of Particulate Processes. 2nd Edition, Academic Press, New York.

 
 
Top