Back
 AE  Vol.6 No.4 , October 2018
First Estimation of Drosophila EPS Solution for Permeabilizing Lepidoptera Galleria mellonella Embryos
Abstract: The increased importance of the G. mellonella for wide range of scientific research and commercial sides will need to create a germplasm resource banking by cryopreservation. Impermeability is a fundamental limiting factor for the successful cryopreservation of arthropods embryos. The successful permeability of Drosophila embryo by using an embryo permeabilization solvent (EPS) solution encouraged this trial on G. mellonella embryos (stage of 24 hours Post-oviposition (h PO)). Permeability assessment with Rhodamine B and crystal violet dyes showed that G. mellonella embryos can be permeabilized by EPS of D-limonene that has 3 mol ethoxylated alcohol. The permeabilization for 30 sec exposure time was resulted 61.5% ± 5.8% survival rate, 31.7% ± 3.1% uptakes dyes and 40.5% ± 0.3% was the survival rate post loading in 12% Ethylene glycol (EG). The low viability after immersion in liquid nitrogen (LN) (0.6% ± 0.08%) is due to the dual toxicity of EPS and cryoprotectant (CPA) solutions. However, fluorescence images showed sufficient permeability that confirms the possibility to increase the permeability of G. mellonella embryos with EPS solution, and to have the opportunity to improve the viability after LN by improving procedures of loading and dehydration with various CPAs and exposure times, which decrease the toxicity effect.
Cite this paper: Abidalla, M. and Roversi, P. (2018) First Estimation of Drosophila EPS Solution for Permeabilizing Lepidoptera Galleria mellonella Embryos. Advances in Entomology, 6, 213-225. doi: 10.4236/ae.2018.64017.
References

[1]   Tsai, C.J., Loh, J.M.S. and Proft, T. (2016) Galleria mellonella Infection Models for the Study of Bacterial Diseases and for Antimicrobial Drug Testing. Virulence, 7, 214-229.
https://doi.org/10.1080/21505594.2015.1135289

[2]   Etienne, J. (1975) Indirect Effect of the Larval Food of an Alternative Host (Galleria mellonella L., Lepidoptera, Galleriidae) on the Reproduction of an Entomophagous Insect (Lixophaga distraeae Towns, Dipt. Tachinidae). Comptes Rendus Hebdomadires Des Seances De l’Academie Des Sciences. Serie D: Sciences Naturelles, 281, 1183-1186. [In French]

[3]   Abidalla, M. (2018) Morphogenesis of Early Embryonic Development in the Greater Wax Moth, Galleria Mellonella (Lepidoptera: Pyralidae). Journal of Entomology, 15, 1-12.
https://doi.org/10.3923/je.2018.1.12

[4]   Abidalla, M. and Battaglia, D. (2018) Observations of Embryonic Changes in Middle and Late Stages of the Greater Wax Moth, Galleria mellonella (Lepidoptera: Pyralidae). Advances in Entomology, 6, In Press.
https://doi.org/10.4236/ae.2018.63015

[5]   Abidalla, M. and Cosi, E. (2018) Effects of Embryonic Development Stages and Cryoprotective Agents on Cryopreservation in Galleria Mellonella Embryos. CryoLetters, In Press.

[6]   Cosi, E., Abidalla, M. and Roversi, P.F. (2010) The Effect of Tween 80 on Eggshell Permeabilization in Galleria mellonella (L.) (Lepidoptera, Pyralidae). CryoLetters, 31, 291-300.

[7]   Mazur, P., Cole, K.W., Hall, J.W., Schreuders, P.D. and Mahowald, A.P. (1992) Cryobiological Preservation of Drosophila Embryos. Science, 258, 1932-1935.
https://doi.org/10.1126/science.1470915

[8]   Steponkus, P.L. and Caldwell, S. (1993) An Optimized Procedure for the Cryopreservation of Drosophila melanogaster Embryos. CryoLetters, 14, 377-380.

[9]   Steponkus, P.L., Meyers, S.P., Lynch, D.V., Gardner, L., Bronshteyn, V., Leibo, S.P., Rall, W.F., Pitt, R.E., Lin, T.-T. and MacIntyre, R.J. (1990) Cryopreservation of Drosophila melanogaster Embryos. Nature, 345, 170-172.
https://doi.org/10.1038/345170a0

[10]   Roversi, P.F., Cosi, E. and Tiziana, I. (2008) Chill Sensitivity and Cryopreservation of Eggs of the Greater Wax Moth Galleria mellonella (Lepidoptera: Pyralidae). Cryobiology, 56, 1-7.
https://doi.org/10.1016/j.cryobiol.2007.09.002

[11]   Woods, H.A., Bonnecaze, R.T. and Zrubek, B. (2005) Oxygen and Water Flux across Eggshells of Manduca sexta. Journal of Experimental Biology, 208, 1297-1308.
https://doi.org/10.1242/jeb.01525

[12]   Woods, H.A. (2010) Water Loss and Gas Exchange by Eggs of Manduca sexta: Trading off Costs and Benefits. Journal of Insect Physiology, 56, 480-487.
https://doi.org/10.1016/j.jinsphys.2009.05.020

[13]   Barbier, R. and Chauvin, G. (1974) Ultrastructure and Role of Aeropylae and Egg Envelopes of Galleria mellonella. Journal of Insect Physiology, 20, 809-820.
https://doi.org/10.1016/0022-1910(74)90172-3

[14]   Margaritis, L.H., Kafatos, F.C. and Petri, W.H. (1980) The Eggshell of Drosophila melanogaster. I. Fine Structure of the Layers and Regions of the Wild-Type Eggshell. Journal of Cell Science, 43, 1-35.

[15]   Valencia, M.D., Miller, L.H. and Mazur, P. (1996) Permeabilization of Eggs of the Malaria Mosquito Anopheles gambiae. Cryobiology, 33, 149-162.
https://doi.org/10.1006/cryo.1996.0015

[16]   Mazur, P., Cole, K.W. and Mahowald, A.P. (1992) Critical Factors Affecting the Permeabilization of Drosophila Embryos by Alkanes. Cryobiology, 29, 210-239.
https://doi.org/10.1016/0011-2240(92)90021-S

[17]   Mazur, P., Cole, K.W., Schreuders, P.D. and Mahowald, A.P. (1993) Contributions of Cooling and Warming Rate and Developmental Stage to the Survival of Drosophila Embryos Cooled to 205 °C. Cryobiology, 30, 45-73.
https://doi.org/10.1006/cryo.1993.1006

[18]   Strecker, T.R., McGhee, S., Shih, S. and Ham, D. (1994) Permeabilization, Staining and Culture of Living Drosophila Embryos. Biotechnic and Histochemistry, 69, 25-30.
https://doi.org/10.3109/10520299409106257

[19]   Lynch, D.V., Lin, T.T., Myers, S.P., Leibo, S.P., Macintyre, R.J., Pitt, R.E. and Steponkus, P.L. (1989) A Two-Step Method for Permeabilization of Drosophila Eggs. Cryobiology, 26, 445-452.
https://doi.org/10.1016/0011-2240(89)90069-2

[20]   Abidalla, M., Cappellozza, S., Saviane, A., Pagano, J., Battaglia, D. and Roversi, P.F. (2018) Influence of the Embryonic Developmental Stage on Permeabilization and Acclimation of Silkworm (Bombyx mori) Eggs for Cryopreservation. Redia, 101. (In Press)

[21]   Rand, M.D., Kearney, A.L., Dao, J. and Calson, T. (2010) Permeabilization of Drosophila Embryos for Introduction of Small Molecules. Insect Biochemistry and Molecular Biology, 40, 792-804.
https://doi.org/10.1016/j.ibmb.2010.07.007

[22]   Berkebile, D.R., Chirico, J. and Leopold, R.A. (2000) Permeabilization of Cochliomyia hominivorax (Diptera: Calliphoridae) Embryos. Journal of Medical Entomology, 37, 968-972.
https://doi.org/10.1603/0022-2585-37.6.968

[23]   Matsumoto, S., Ozawa, R., Nagamine, T., Kim, G.H., Uchiumi, K., Shono, T. and Mitsui, T. (1995) Intracellular Transduction in the Regulation of Pheromone Biosynthesis of the Silkworm, Bombyx mori: Suggested Involvement of Calmodulin and Phosphoprotein Phosphatase. Bioscience, Biotechnology and Biochemstry, 59, 560-562.
https://doi.org/10.1271/bbb.59.560

[24]   Wang, W.B., Leopold, R., Nelson, D.R. and Freeman, T.P. (2000) Cryopreservation of Musca domestica (Diptera: Muscidae) Embryos. Cryobiology, 41, 153-166.
https://doi.org/10.1006/cryo.2000.2278

[25]   Rajamohan, A. and Leopold, R.A. (2007) Cryopreservation of Mexican Fruit Flies by Vitrification: Stage Selection and Avoidance of Thermal Stress. Cryobiology, 54, 44-54.
https://doi.org/10.1016/j.cryobiol.2006.10.192

[26]   Lin, T.T., Pitt, R.E. and Steponkus, P.L. (1989) Osmometric Behavior of Drosophila melanogaster Embryos. Cryobiology, 26, 453-471.
https://doi.org/10.1016/0011-2240(89)90070-9

[27]   McCaa, C., Diller, K.R., Aggarwal, S.J. and Takahashi, T. (1991) Cryomicroscopic Determination of the Membrane Osmotic Properties of Human Monocytes at Subfreezing Temperatures. Cryobiology, 28, 391-399.
https://doi.org/10.1016/0011-2240(91)90046-Q

 
 
Top