JMP  Vol.2 No.11 , November 2011
Effect of Magnetohydrodynamic on Thin Films of Unsteady Micropolar Fluid through a Porous Medium
ABSTRACT
In This paper, we deal with the study of the effect of magnetohydrodynamic on thin films of unsteady micropolar fluid through a porous medium. These Thin films are considered for three different geometries. The governing continuity, momentum and angular momentum equations are converted into a system of non-linear ordinary differential equations by means of similarity transformation. The resulting system of coupled non-linear ordinary differential equations is solved numerically by using shooting method. A representative set of numerical results in the three thin film flow problems for velocity and micro-rotation profiles are discussed and presented graphically. A comprehensive parametric study is carried out to show the effects of the micropolar fluid parameters, magnetic field parameter, permeability parameter and etc. on the obtained solutions.

Cite this paper
nullG. Abdel-Rahman, "Effect of Magnetohydrodynamic on Thin Films of Unsteady Micropolar Fluid through a Porous Medium," Journal of Modern Physics, Vol. 2 No. 11, 2011, pp. 1290-1304. doi: 10.4236/jmp.2011.211160.
References
[1]   W. C. Tan and T. Masuoka, “Stokes First Problem for a Second Grade Fluid in a Porous Half-Space with Heated Boundary,” International Journal of Non-Linear Mechanics, Vol. 40, No. 4, 2005, pp. 515-522. doi:10.1016/j.ijnonlinmec.2004.07.016

[2]   W.C. Tan and. T. Masuoka, “Stokes First Problem for an Oldroyd-B Fluid in a Porous Half-Space,” Physics of Fluids, Vol. 17, No. 2, 2005, pp. 3101-3107. doi:10.1063/1.1850409

[3]   C. Fetecau and C. Fetecau, “Decay of a Potential Vortex in an Oldroyd-B Fluid,” International Journal of Engineering Science, Vol. 43, No. 3, 2005, pp. 340-351. doi:10.1016/j.ijengsci.2004.08.013

[4]   C. Fetecau and C. Fetecau, “Unsteady Flows of Oldroyd-B Fluids in a Channel of Rectangular Cross- Section,” International Journal of Non-Linear Mechanics, Vol. 40, No. 9, 2005, pp. 1214-1219. doi:10.1016/j.ijnonlinmec.2005.05.005

[5]   C. Fetecau and C. Fetecau, “Starting Solutions for Some Unsteady Unidirectional Flows of a Second Grade Fluid,” International Journal of Engineering Science, Vol. 43, No. 10, 2005, pp. 781-789. doi:10.1016/j.ijengsci.2004.12.009

[6]   T. Hayat, S. Nadeem, S. Asghar and A. M. Siddiqui, “Unsteady MHD Flow Due to Eccentrically Rotating Porous Disk and a Third Grade Fluid at Infinity,” International Journal of Applied Mechanics and Engineering, Vol. 11, No. 2, 2006, pp. 415-419.

[7]   T. Hayat and A. H. Kara, “Couette Flow of a Third Grade Fluid with Variable Magnetic Field,” Mathematical and Computer Modelling, Vol. 43, No. 1-2, 2006, pp. 132-137. doi:10.1016/j.mcm.2004.12.009

[8]   T. Hayat, S. B. Khan and M. Khan, “The Influence of Hall Current on the Rotating Oscillating Flows of an Oldoyd-B Fluid in Porous Medium,” Nonlinear Dynamics, Vol. 47, No. 4, 2007, pp. 353- 362. doi:10.1007/s11071-006-9034-z

[9]   C. I. Chen, C. K. Chen and Y. T. Yang, “Unsteady Unidirectional Flow of an Oldoyd-B Fluid in a Circular Duct with Different Given Volume Flow Rate Conditions,” Heat and Mass Transfer, Vol. 40, 2004, pp. 203-209. doi:10.1007/s00231-002-0350-7

[10]   C. I. Chen, C. K. Chen and Y. T. Yang, “Unsteady Unidirectional Flow of a Second Grade Fluid between the Parallel Plates with Different Given Volume Flow Rate Conditions,” Applied Mathematics and Computation, Vol. 137, No. 2, 2003, pp. 437-450. doi:10.1016/S0096-3003(02)00149-2

[11]   A. C. Eringen, “Simple Microfluids,” International Journal of Engineering Science, Vol. 2, No. 2, 1964, pp. 205-217. doi:10.1016/0020-7225(64)90005-9

[12]   A. C. Eringen, “Theory of Micropolar Fluids,” International Journal of Mathematics and Mechanics, Vol. 16, 1966, pp. 1-18.

[13]   A. C. Eringen, “Theory of Micropolar Fluids,” Journal of Mathematical Analysis and Applications, Vol. 38, No. 2, 1972, pp. 480-496. doi:10.1016/0022-247X(72)90106-0

[14]   A.C. Eringen, “Microcontinuum Field Theories. II: Fluent Media,” Springer, New York, 2001.

[15]   Y. Y. Lok, P. Phang, N. Amin and I. Pop, “Unsteady Boundary Layer Flow of a Micropolar Fluid near the Forward Stagnation Point of a Plane Surface,” International Journal of Engineering Science, Vol. 41, 2003, pp. 173-186. doi:10.1016/S0020-7225(02)00146-5

[16]   R. Nazar, N. Amin, D. Filip and I. Pop, “Stagnation Point Flow of a Micropolar Fluid towards a Stretching Sheet,” International Journal of Non-Linear Mechanics, Vol. 39, No. 7, 2004, pp. 1227-1235. doi:10.1016/j.ijnonlinmec.2003.08.007

[17]   A. M. Siddiqui, R. Mahmood and Q. K. Ghori, “Homotopy Perturbation Method for Thin Film Flow of a Third Grade Fluid down an Inclined Plane,” Chaos, Solitons and Fractals, Vol. 35, No. 1, 2008, pp. 140-147. doi:10.1016/j.chaos.2006.05.026

[18]   A. Moncef, “Numerical Study for Micropolar Flow over a Stretching Sheet,” Computational Materials Science, Vol. 38, No. 4, 2007, pp. 774-780. doi:10.1016/j.commatsci.2006.05.014

[19]   A. M. Siddiqui, R. Ahmad and Q. K. Ghori, “Thin Film Flow of Non-Newtonian Fluid on a Moving Belt,” Chaos, Solitons and Fractals, Vol. 33, 2007, pp. 1006-1016. doi:10.1016/j.chaos.2006.01.101

[20]   A. M. Siddiqui, R. Mahmood and Q. K. Ghori, “Homotopy Perturbation Method for Thin Film Flow of a Fourth Grade Fluid down a Vertical Cylinder,” Physical Letters A, Vol. 352, 2006, pp. 404-410. doi:10.1016/j.physleta.2005.12.033

[21]   M. Sajid, N. Ali and T. Hayat, “On Exact Solutions for Thin Film Flows of a Micropolar Fluid,” Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 2, 2009, pp. 451-461. doi:10.1016/j.cnsns.2007.09.003

[22]   M. Hameed and S. Nadeem, “Unsteady MHD Flow of a Non-Newtonian Fluid on a Porous Plate,” Journal of Mathematical Analysis and Applications, Vol. 325, 2007, pp. 724-733. doi:10.1016/j.jmaa.2006.02.002

[23]   G. M. Abdel-Rahman, “Studying Effect of MHD on Thin Films of a Micropolar Fluid,” Physica B, Vol. 404, No. 21, 2009, pp. 3859- 3866. doi:10.1016/j.physb.2009.07.112

[24]   G. Lukaszewicz, “Micropolar Fluids: Theory and Applications,” Birkhauser, Basel, 1999.

[25]   D. A. S. Ress and I. Pop, “Free Convection Boundary Layer Flow of a Micropolar Fluid from a Vertical Flat Plate,” IMA Journal of Applied Mathematics, Vol. 61, 2001, pp. 179-191. doi:10.1093/imamat/61.2.179

[26]   G. Ahmadi, “Self-Similar Solution of Incompressible Micropolar Boundary Layer Flow over a Semi-Infinite Flat Plate,” International Journal of Engineering Science, Vol. 14, No. 7, 1976, pp. 639-646. doi:10.1016/0020-7225(76)90006-9

[27]   S. K. Jena and M. N. Mathur, “Similarity Solutions for Laminar Free Convection Flow of a Thermo-Micropolar Fluid Past a Non-Isothermal Flat Plate,” International Journal of Engineering Science, Vol. 19, No. 11, 1981, pp. 1431-1439. doi:10.1016/0020-7225(81)90040-9

[28]   G. S. Guram and A. C. Smith, “Stagnation Flows of Micropolar Fluids with Strong and Weak Interactions,” Computers & Mathematics with Applications, Vol. 6, No. 2, 1980, pp. 213-233. doi:10.1016/0898-1221(80)90030-9

[29]   A. Ishak, R. Nazar and I. Pop, “Magnetohydrodynamic (MHD) Flow and Heat Transfer Due to a Stretching Cylinder,” Energy Conversion and Management, Vol. 49, No. 11, 2008, pp. 3265-3269. doi:10.1016/j.enconman.2007.11.013

 
 
Top