JMP  Vol.2 No.11 , November 2011
On the Quantum Statistical Distributions Describing Finite Fermions and Bosons Systems
ABSTRACT
A century old methodology for deriving statistical distribution using approximate Stirling’s formulation of the factorial becomes questionable. By avoiding the use of exaggerated approximations, a new picture of the energy distribution of fermions and bosons are presented. Energy distribution among fermions (or bosons) in systems with finite degeneracy are found to be degeneracy dependent. The presented point of view explains, successfully, presence of degeneracy pressure in ultra-cooled Fermi gas and predicts the minimum accessible temperature for finite degeneracy fermions system.

Cite this paper
nullE. Elmaghraby, "On the Quantum Statistical Distributions Describing Finite Fermions and Bosons Systems," Journal of Modern Physics, Vol. 2 No. 11, 2011, pp. 1242-1246. doi: 10.4236/jmp.2011.211154.
References
[1]   E. K. Elmaghraby, “Initial Exciton Configuration in (p,n) Pre-Equilibrium Emission Reactions,” Physical Review C, Vol. 78, 2008, p. 014601. doi:10.1103/PhysRevC.78.014601

[2]   E. K. Elmaghraby, “PHASE-OTI: A Pre-Equilibrium Model Code for Nuclear Reactions Calculations,” Computer Physics Communications, Vol. 180, 2009, pp 1694- 1699. doi:10.1016/j.cpc.2009.03.015

[3]   R. K. Niven, “Exact Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics,” Physics Letters A, Vol. 342, No. 4, 2005, pp 286-293. doi:10.1016/j.physleta.2005.05.063

[4]   R. K. Niven, “Non-Asymptotic Thermodynamic Ensembles,” Europhysics Letters, Vol. 86, 2009, p. 20010. doi:10.1209/0295-5075/86/20010

[5]   R. K. Niven, “Cost of s-Fold Decisions in Exact Maxwell Boltzmann, Bose Einstein and Fermi Dirac Statistics, Physica A, Vol. 365, No. 1, 2006, pp. 142-149. doi:10.1016/j.physa.2006.01.021

[6]   C. Tsallis, “Nonadditive Entropy: The Concept and Its Use,” European Physical Journal A, Vol. 40, 3, 2009, pp. 257-266. doi:10.1140/epja/i2009-10799-0

[7]   A. Isihara, “Statistical Physics,” Academic Press, New York, 1971.

[8]   Y. Weissman, “An Improved Analytical Approximation to n!,” American Journal of Physics, Vol. 51, No. 1, 1983, pp. 9. doi:10.1119/1.13412

[9]   N. D. Mermin, “Improving an Improved Analytical Approximation to n!,” American Journal of Physics, Vol. 51, No. 9, 1983, p. 776. doi:10.1119/1.13139

[10]   C. Leubner, “Generalised Stirling Approximations to n!,” European Journal of Physics, Vol. 6, 1985, pp. 299-301. doi:10.1088/0143-0807/6/4/016

[11]   11. C. Tsallis and U. Tirnakli, “Nonadditive Entropy and Nonextensive Statistical Mechanics—Some Central Concepts and Recent Applications,” Journal of Physics: Conference Series, Vol. 201, No. 1, 2010, p. 012001.

[12]   C. Tsallis, “Possible generalization of Boltzmann-Gibbs statistics,” Journal of Statistical Physics, Vol. 52, No. 1-2, 1988, pp. 479-487. doi:10.1007/BF01016429

[13]   B.-N. Guo and F. Qi, “Sharp Bounds for Harmonic Numbers,” Applied Mathematics and Computing. 2011, in Press.

[14]   A. Sofo, “Integral Forms of Sums Associated with Harmonic Numbers,” Applied Mathematics and Computing, Vol. 207, No. 2, 2009, pp. 365-372. doi:10.1016/j.amc.2008.10.044

[15]   F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles and C. Salomon, “Quasipure Bose- Einstein Condensate Immersed in a Fermi Sea,” Physical Review Letters, Vol. 87, No. 8, 2001, p. 080403. doi:10.1103/PhysRevLett.87.080403

[16]   Z. Hadzibabic, S. Gupta, C. A. Stan, C. H. Schunck, M. W. Zwierlein, K. Dieckmann and W. Ketterle, “Fiftyfold Improvement in the Number of Quantum Degenerate Fermionic Atoms,” Physical Review Letters, Vol. 91, No. 16, 2003, p. 160401. doi:10.1103/PhysRevLett.91.160401

[17]   S. Gupta, Z. Hadzibabic, M. W. Zwierlein, C. A. Stan, K. Dieckmann, C. H. Schunck, E. G. M. van Kempen, B. J. Verhaar and W. Ketterle, “Radio-Frequency Spectroscopy of Ultracold Fermions,” Science, Vol. 300, No. 5626, 2003, pp. 1723-1726. doi:10.1126/science.1085335

[18]   S. Aubin, S. Myrskog, M. H. T. Extavour, L. J. Leblanc, D. McKay, A. Stummer and J. H. Thywissen, “Rapid Sympathetic Cooling to Fermi Degeneracy on a Chip,” Nature Physics, Vol. 2, No. 6, 2006, pp. 384-387. doi:10.1038/nphys309

[19]   B. DeMarco and D. S. Jin, “Onset of Fermi Degeneracy in a Trapped Atomic Gas,” Science, Vol. 285, No. 5434, 1999, pp. 1703-1706. doi:10.1126/science.285.5434.1703

[20]   A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B. Partridge and R. G. Hulet, “Observation of Fermi Pressure in a Gas of Trapped Atoms,” Science, Vol. 291, No. 5513, 2001, pp. 2570-2572. doi:10.1126/science.1059318

[21]   C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell and C. E. Wieman, “Production of Two Overlapping Bose-Einstein Condensates by Sympathetic Cooling,” Physical Review Letters, Vol. 78, No. 4, 1997, pp. 586-589. doi:10.1103/PhysRevLett.78.586

 
 
Top