AiM  Vol.8 No.7 , July 2018
Antibiotic Resistance and Potential Pathogenicity of an Isolate Salmonella enterica enterica Based on Genomic Comparison with of 103 and 2199 Strains Obtained from Contaminated Chicken Meat in Mexico
Abstract: The strategies implemented to identify pathogenic strains of Salmonella in countries with high production and consumption when is of chicken meat [such as Mexico), successfully bring germ-free meat to the market. Two Salmonella enterica enterica strains obtained from Mexican chicken meat were completely sequenced. The genomic comparison with the CT18 Salmonella strain indicates that strains 103 and 2199 vary by 1.9%. Genome analysis of the isolated strains revealed the presence of numerous virulence genes, as well as antibiotics resistance genes in these two isolates. Their potential pathogenicity was inferred from presence of 22 (103 strains) and 19 genes (2199 strains) homologous to the one annotated in Salmonella enterica virulome databanks. The characterization of these strains will contribute to successful Salmonella monitoring in Mexico.
Cite this paper: Condé, R. , Diego, P. , Luis, L. , Homero, H. , Karina, R. , Edmundo, R. and Bernardo, S. (2018) Antibiotic Resistance and Potential Pathogenicity of an Isolate Salmonella enterica enterica Based on Genomic Comparison with of 103 and 2199 Strains Obtained from Contaminated Chicken Meat in Mexico. Advances in Microbiology, 8, 465-475. doi: 10.4236/aim.2018.87031.

[1]   Gehring, A..G, Albin, D.M., Reed, S.A., Tu, S.I. and Brewster, J.D. (2008) An Antibody Microarray, in Multiwell Plate Format, for Multiplex Screening of Foodborne Pathogenic Bacteria and Biomolecules. Analytical and Bioanalytical Chemistry, 391, 497-506.

[2]   Reche, M.P., Echeita, M.A., de los Rios, J.E., Usera, M.A., Jimenez, P.A., Rojas, A.M., et al. (2003) Comparison of Phenotypic and Genotypic Markers for Characterization of an Outbreak of Salmonella serotype Havana in Captive Raptors. Journal of Applied Microbiology, 94, 65-72.

[3]   Yokoyama, E., Murakami, K., Shiwa, Y., Ishige, T., Ando, N., Kikuchi, T., et al. (2014) Phylogenetic and Population Genetic Analysis of Salmonella enterica Subsp. Enterica Serovar Infantis Strains Isolated in Japan Using Whole Genome Sequence Data. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 27, 62-68.

[4]   Ben-Barak, Z., Streckel, W., Yaron, S., Cohen, S., Prager, R and Tschape, H. (2006) The Expression of the Virulence-Associated Effector Protein Gene AvrA Is Dependent on a Salmonella enterica-Specific Regulatory Function. International Journal of Medical Microbiology: IJMM, 296, 25-38.

[5]   Borges, K.A., Furian, T.Q., de Souza, S.N., Tondo, E.C., Streck, A.F., Salle, C.T., et al. (2017) Spread of a Major Clone of Salmonella enterica Serotype Enteritidis in Poultry and in Salmonellosis Outbreaks in Southern Brazil. Journal of Food Protection, 80, 158-163.

[6]   Eurosurveillance editorial t (2013) The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-Borne Outbreaks in 2011 Has Been Published. Euro surveillance: Bulletin Europeen sur les maladies transmissibles = European Communicable Disease Bulletin, 18, 20449.

[7]   Hernandez, G. and Parrish, M. (2017) Vertical Integration Bolsters the Mexican Poultry Industry. USDA Foreign Agricultural Service, 1-10.

[8]   Capuano, F., Mancusi, A., Capparelli, R., Esposito, S. and Proroga, Y.T. (2013) Characterization of Drug Resistance and Virulotypes of Salmonella Strains Isolated from Food and Humans. Foodborne Pathogens and Disease, 10, 963-968.

[9]   Zhang, S., Santos, R.L., Tsolis, R.M., Stender, S., Hardt, W.D., Baumler, A.J., et al. (2002) The Salmonella enterica Serotype Typhimurium Effector Proteins SipA, SopA, SopB, SopD, and SopE2 Act in Concert to Induce Diarrhea in Calves. Infection and Immunity, 70, 3843-3855.

[10]   Vazeille, E., Chassaing, B., Buisson, A., Dubois, A., de Vallee, A., Billard, E., et al. (2016) GipA Factor Supports Colonization of Peyer’s Patches by Crohn’s Disease-Associated Escherichia coli. Inflammatory Bowel Diseases, 22, 68-81.

[11]   Kutsukake, K., Nakashima, H., Tominaga, A. and Abo, T. (2006) Two DNA Invertases Contribute to Flagellar Phase Variation in Salmonella enterica Serovar Typhimurium Strain LT2. Journal of Bacteriology, 188, 950-957.

[12]   Ahmed, H.A., El-Hofy, F.I., Shafik, S.M., Abdelrahman, M.A. and Elsaid, G.A. (2016) Characterization of Virulence-Associated Genes, Antimicrobial Resistance Genes, and Class 1 Integrons in Salmonella enterica Serovar Typhimurium Isolates from Chicken Meat and Humans in Egypt. Foodborne Pathogens and Disease, 13, 281-288.

[13]   Chan, K., Baker, S., Kim, C.C., Detweiler, C.S., Dougan, G. and Falkow, S. (2003) Genomic Comparison of Salmonella enterica Serovars and Salmonella bongori by Use of an S. enterica Serovar Typhimurium DNA Microarray. Journal of Bacteriology, 185, 553-563.

[14]   Parkhill, J., Dougan, G., James, K.D., Thomson, N.R., Pickard, D., Wain, J., et al. (2001) Complete Genome Sequence of a Multiple Drug Resistant Salmonella enterica Serovar Typhi CT18. Nature, 413, 848-852.

[15]   Magalhaes, M.L., Vetting, M.W., Gao, F., Freiburger, L., Auclair, K. and Blanchard, J.S. (2008) Kinetic and Structural Analysis of Bisubstrate Inhibition of the Salmonella enterica Aminoglycoside 6’-N-Acetyltransferase. Biochemistry, 47, 579-584.

[16]   Springer, A.L. and Schmid, M.B. (1993) Molecular Characterization of the Salmonella typhimurium parE Gene. Nucleic Acids Research, 21, 1805-1809.

[17]   Akiyama, T., Presedo, J. and Khan, A.A. (2013) The tetA Gene Decreases Tigecycline Sensitivity of Salmonella enterica Isolates. International Journal of Antimicrobial Agents, 42, 133-140.

[18]   Kim, S.Y., Lee, S.K., Park, M.S. and Na, H.T. (2016) Analysis of the Fluoroquinolone Antibiotic Resistance Mechanism of Salmonella enterica Isolates. Journal of Microbiology and Biotechnology, 26-29, 1605-1612.

[19]   Dahiya, S., Kapil, A., Lodha, R., Kumar, R., Das, B.K., Sood, S., et al. (2014) Induction of Resistant Mutants of Salmonella enterica Serotype Typhi under Ciprofloxacin Selective Pressure. Indian Journal of Medical Research, 139, 746-753.

[20]   Bowater, R.P., Chen, D. and Lilley, D.M. (1994) Elevated Unconstrained Supercoiling of Plasmid DNA Generated by Transcription and Translation of the Tetracycline Resistance Gene in Eubacteria. Biochemistry, 33, 9266-9275.

[21]   Frye, J.G. and Jackson, C.R. (2013) Genetic Mechanisms of Antimicrobial Resistance Identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. Isolated from U.S. Food Animals. Frontiers in Microbiology, 4, 135.

[22]   Zou, X., Huang, X., Xu, S., Zhou. L., Sheng, X., Zhang. H., et al. (2009) Identification of a fljA Gene on a Linear Plasmid as the Repressor Gene of fliC in Salmonella enterica Serovar Typhi. Microbiology and Immunology, 53, 191-197.

[23]   Bao, Y.G., Qi, Z.F. and Bao, L. (2009) Cloning, Expression and Bioinformatic Analysis of Rv3871 Gene Related to Mycobacterium tuberculosis Virulent Protein Secretion. Journal of Southern Medical University, 29, 2371-2374.

[24]   Zhang, Y., Wu, S., Ma, J., Xia, Y., Ai, X. and Sun, J. (2015) Bacterial Protein AvrA Stabilizes Intestinal Epithelial Tight Junctions via Blockage of the C-Jun N-Terminal Kinase Pathway. Tissue Barriers, 3, e972849.

[25]   Lu, R., Wu, S., Zhang, Y.G., Xia, Y., Liu, X., Zheng, Y., et al. (2014) Enteric Bacterial Protein AvrA Promotes Colonic Tumorigenesis and Activates Colonic Beta-Catenin Signaling Pathway. Oncogenesis, 3, e105.

[26]   Jones, B.D. and Falkow, S. (1994) Identification and Characterization of a Salmonella typhimurium Oxygen-Regulated Gene Required for Bacterial Internalization. Infection and Immunity, 62, 3745-3752.

[27]   Baumler, A.J., Tsolis, R.M., Valentine, P.J., Ficht, T.A. and Heffron, F. (1997) Synergistic Effect of Mutations in invA and lpfC on the Ability of Salmonella typhimurium to Cause Murine Typhoid. Infection and Immunity, 65, 2254-2259.

[28]   Galyov, E.E., Wood, M.W., Rosqvist, R., Mullan, P.B., Watson, P.R., Hedges, S., et al. (1997) A Secreted Effector Protein of Salmonella dublin Is Translocated into Eukaryotic Cells and Mediates Inflammation and Fluid Secretion in Infected Ileal Mucosa. Molecular Microbiology, 25, 903-912.

[29]   De Jong, H.K., Koh, G.C., van Lieshout, M.H., Roelofs, J.J., van Dissel, J.T., van der Poll, T., et al. (2014) Limited Role for ASC and NLRP3 during in Vivo Salmonella Typhimurium Infection. BMC Immunology, 15, 30.

[30]   Hensel, M., Shea, J.E., Raupach, B., Monack, D., Falkow, S., Gleeson, C., et al. (1997) Functional Analysis of ssaJ and the ssaK/U operon, 13 Genes Encoding Components of the Type III Secretion Apparatus of Salmonella Pathogenicity Island 2. Molecular Microbiology, 24, 155-167.

[31]   Wood, M.W., Jones, M.A., Watson, P.R., Hedges, S., Wallis, T.S. and Galyov, E.E. (1998) Identification of a Pathogenicity Island Required for Salmonella Enteropathogenicity. Molecular Microbiology, 29, 883-891.

[32]   Dorsey, C.W., Laarakker, M.C., Humphries, A.D., Weening, E.H. and Baumler, A.J. (2005) Salmonella enterica Serotype Typhimurium MisL Is an Intestinal Colonization Factor That Binds Fibronectin. Molecular Microbiology, 57, 196-211.

[33]   McClelland, M., Sanderson, K.E., Spieth, J., Clifton, S.W., Latreille, P., Courtney, L., et al. (2001) Complete Genome Sequence of Salmonella enterica Serovar Typhimurium LT2. Nature, 413, 852-856.

[34]   Miller, S.I., Kukral, A.M. and Mekalanos, J.J. (1989) A Two-Component Regulatory System (phoP phoQ) Controls Salmonella typhimurium Virulence. Proceedings of the National Academy of Sciences of the United States of America, 86, 5054-5058.

[35]   Pegues, D.A., Hantman, M.J., Behlau, I. and Miller, S.I. (1995) PhoP/PhoQ Transcriptional Repression of Salmonella typhimurium Invasion Genes: Evidence for a Role in Protein Secretion. Molecular Microbiology, 17, 169-181.

[36]   Linehan, S.A., Rytkonen, A., Yu, X.J., Liu, M. and Holden, D.W. (2005) SlyA Regulates Function of Salmonella Pathogenicity Island 2 (SPI-2) and Expression of SPI-2-Associated Genes. Infection and Immunity, 73, 4354-4362.

[37]   Blanc-Potard, A.B., Solomon, F., Kayser, J. and Groisman, E.A. (1999) The SPI-3 Pathogenicity Island of Salmonella enterica. Journal of Bacteriology, 181, 998-1004.

[38]   Ganesan, V., Harish, B.N., Menezes, G.A. and Parija, S.C. (2014) Detection of Salmonella in Blood by PCR Using iroB Gene. Journal of Clinical and Diagnostic Research, 8, DC01-DC03.

[39]   Rang, C., Alix, E., Felix, C., Heitz, A., Tasse, L. and Blanc-Potard, A.B. (2007) Dual Role of the MgtC Virulence Factor in Host and Non-Host Environments. Molecular Microbiology, 63, 605-622.

[40]   Mehla, K. and Ramana, J. (2015) DBDiaSNP: An Open-Source Knowledgebase of Genetic Polymorphisms and Resistance Genes Related to Diarrheal Pathogens. OMICS: A Journal of Integrative Biology, 19, 354-360.

[41]   Litrup, E., Torpdahl, M., Malorny, B., Huehn, S., Helms, M., Christensen, H., et al. (2010) DNA Microarray Analysis of Salmonella Serotype Typhimurium Strains Causing Different Symptoms of Disease. BMC Microbiology, 10, 96.