[1] Ellsworth, M.J. (2004) Chip power density and module cool technology projections for the current decade. Pro- ceedings of the 9th Intersociety Conference on Thermal and Thermo Mechanical Phenomena in Electronic Systems, Las Vegas, 2, 707-708.
[2] Zweben, C. (1998) Advances in composite materials for thermal management in electronic packaging. Journal of Management, 50, 47-51.
[3] Zweben, C. (2001) Thermal management and electronic packaging applications. ASM Handbook, 21, 1078-1084.
[4] German, R.M., Hens, K.F. and Johnson, J.L. (1994) Powder metallurgy processing of thermal management materials for microelectronic applications. International Journal of Powder Metallurgy, 30, 205-215.
[5] Evans, T.C. (1998) Thermal properties of electronic ma- terials. Thermal Management Handbook for Electronic Assemblies, McGraw-Hill, New York.
[6] Ruch, P.W., Beffort, O., Kleiner, S., Weber, L. and Uggowitzer, P.J. (2006) Selective interfacial bonding in Al(Si)-diamond composites and its effect on thermal conductivity. Composites Science and Technology, 66, 2677-2685. doi:10.1016/j.compscitech.2006.03.016
[7] Clyne T.W. (2000) Thermal and electrical conduction in MMCs. In: Kelly, A., Chou, T.W., Talreja, R., Clyne, T.W., Warren, R., Carlsson, L., et al., Eds., Comprehensive Composite Materials. Metal-Matrix Composites, Elsevier, Amsterdam, 3.
[8] Weber, L. and Tavangar, R. (2007) On the Influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X = Cr, B) diamond composites. Journal of Materials Science, 57, 988-991.
[9] Schubert, T., Ciupinski, ?., Zielinski ,W., Michalski, A., Weig?rber, T. and Kieback, B. (2008) Interfacial charac- terization of Cu/diamond composites prepared by powder metallurgy for heat sink application. Scripta Materialia, 58, 263-266. doi:10.1016/j.scriptamat.2007.10.011
[10] Schubert, T.H., Ciupiński, ?., Morgiel, J., Weidmüller, H., Weissg?rber, T. and Kieback, B. (2007) Advanced composite materials for heat sink applications. Euro PM 2007 —PM Functional Materials, Toulouse, 15-17 October 2007.
[11] Lowenheim, F.A. (1974) Modern electroplating. John Wiley and Sons, New York.
[12] Metal Powder Industries Federation, Princeton (1998).
[13] Fang, Z. and Eason, J.W., (1993) Nondestructive evalua- tion of WC-Co composites using magnetic properties. International Journal of Powder Metallurgy, 29, 259- 265.
[14] Deborah, C.D.L. (2001) Applied materials science applica- tion of engineering materials in structural, electronics, thermal and other industries. Chapman and Hall, London.
[15] Moustafa, S.F., Abdel, H.Z., Osama, B.G. and Hussien, A. Synthesis of WC hard materials using coated powders. Advanced Powder Metall, 22, 596-601.
[16] Saito, T., Sato, E., Matsuoka, M. and Iwakura, C.J., (1998) Electroless deposition of Ni-B, Co-B and N-Co-B alloys using dimethyl amineborane as a reducing agent. Applied Electrochemistry, 28, 559-563. doi:10.1023/A:1003233715362
[17] Osaka ,T. Takano, N., Kurokawa, T., Kaneko, T. and Ueno, K. (2003) Characterization of chemically-depo- sited NiB and NiWB thin films as a capping layer for ULSI application. Surface and Coatings Technology, 169-170, 124-127. doi:10.1016/S0257-8972(03)00186-5
[18] Duhin, A., Sverdlov, Y., Feldman, Y. and Shacham-Dia- mand, Y. (2009) Electroless deposition of NiWB alloy on p-type Si(100) for NiSi contact metallization. Electro- chimica Acta, 54, 6036-6041. doi:10.1016/j.electacta.2009.01.062
[19] Mallory, G.O. (1971) The electroless nickel plating bath: effect of variables on the process. Plating, 58, 319-322.
[20] Mallory, G.O. and Hadju, J.B. (1991) Electroless plating: Fundamentals and applications. AESF, Orlando.
[21] Abdel, A.A., Barakat, H., Abdel, H.Z. (2008) Synthesis and characterization of electroless deposited Co–W–P thin films as diffusion barrier layer. Surface & Coatings Technology, 202, 4591-4597. doi:10.1016/j.surfcoat.2008.03.023
[22] Pearlstein, F. and Weightman, R.F. (1974) Electroless cobalt deposition from acid baths. Journal of The Electrochemical Society, 121, 1023-1028. doi.org/10.1149/1.2401971
[23] Ellis, D.L. and McDanels, D.L. (1993) Thermal Conduc- tivity and thermal expansion of graphite fiber- reinforced copper matrix composites. Metallurgical and Materials Transactions A, 24, 43-52. doi:10.1007/BF02669601
[24] Abdel, G. and El-Kad, O. (2005) Improvement of wettability of carbon fiber by in-situ carbide coating. Ph.D. Thesis, Cairo University, Cairo.
[25] Khattab, N.M.M. (2001) Ph.D. Thesis, Department of Chemistry, Faculty of Girls, Ain Shams University, Cairo.