NS  Vol.3 No.11 , November 2011
Role of sedimentation in continental rifting from comparing two narrow rift valleys the Salton Trough and Death Valley-California
Abstract: To unravel the forces and better understand the processes that drive continental rifting, and to understand the role of sedimentation in promoting the rifting process, we compare; the different geological features of two narrow rifts, the Salton Trough and Death Valley, California. According to our models, the Moho is 22 km deep to the southwest of the Salton Sea on US-Mexico border and it deepens to 30 km in the region west of the Salton Trough. In Death Valley, the Moho is 24 km deep in the central part of the basin and it deepens to 32 km outside of the basin. The dome shaped Moho in both rifts is suggested to be primarily the product of magmatic activity in the lower crust and upper mantle. Death Valley is narrow rift in the initial stage of rifting with several sedimentary basins 2 - 4 km deep. In Death Valley magmatic (thermal) forces appears to drive the rifting process. The Salton Trough is wider than Death Valley and is moving toward sea floor spreading. The depth of the sedimentary basins ranges from 8 - 10 km and a combination of thermal and sedimentation appears to drive rifting processes in the Salton Trough.
Cite this paper: Doser, D. , Hussein, M. , Serpa, L. and Velasco, A. (2011) Role of sedimentation in continental rifting from comparing two narrow rift valleys the Salton Trough and Death Valley-California. Natural Science, 3, 927-935. doi: 10.4236/ns.2011.311119.

[1]   Adams, D. (1996) Integrated geophysical studies of continental rifts in west Texas and New Mexico. Ph. D. dissertation, University of Texas at El Paso, El Paso.

[2]   Mickus, K., Stern, R., Keller, G. and Anthony, E. (2009) Potential field evidence for a volcanic rifted marging along the Texas Gulf Coast. Geology, 37, 387-390. doi:10.1130/G25465A.1

[3]   Keller, R., Khan, A., Morgan, P., Wendland, R., Bald- ridge, W., Olson, K., Prodhel C. and Braile L. (1991) A comparative study of the Rio Grande and Kenya rifts. Tectonophysics, 197, 355-371. doi:10.1016/0040-1951(91)90050-3

[4]   Lizarralde, D., Axen, G., Brown, H., Fletcher, J., Gonzalez-Fernandez, A., Holbrook, W., Kent, G., Paramo, P., Sutherland, F. and Umhoefer, P. (2007) Variation in styles of rifting in the Gulf of California. Nature, 448, 466-469. doi:10.1038/nature06035

[5]   Buck, W. (1988) Flexural rotation of normal faults. Tectonics, 7, 959-973. doi:10.1029/TC007i005p00959

[6]   Wernicke, B., Axen, G. and Snow, J. (1989) Basin and Range extension tectonics at the latitude of Las Vegas. Nevada, Geological Society of America Bulletin., 11, 1738-1757.

[7]   Keller, G., Morgan, P. and Seager, W. (1990) Crustal structure, gravity anomalies, and heat flow in the southern Rio Grande rift and their relationship to extensional tectonics. Tectonophysics, 174, 21-37. doi:10.1016/0040-1951(90)90382-I

[8]   Lachenbruch, A. and Morgan, P. (1990) Continental extension, magmatism and elevation: Formal relations and rules of thumb. Tectonophysics, 174, 39-62. doi:10.1016/0040-1951(90)90383-J

[9]   Lense, C., Deverchere, J., Sankov, V., Lukhnev, A., Miroshnichenko, A. and Levi, K. (1998) Crustal deformation in the Baikal rift from GPS measurements. Geophysical Research Letters, 25, 4003-4006. doi:10.1029/1998GL900067

[10]   Buck, W., Lavier, L. and Babeyko, A. (2003) A numerical model of lithospheric extension producing fault- bounded basins and ranges. International Geology Review, 45, 712-723.

[11]   Dueker, K., Yuan, H. and Zurek, B. (2001) Thick- structured proterozoic lithosphere of the rocky mountain region. GSA Today, 11, 4-9. doi:10.1130/1052-5173(2001)011<0004:TSPLOT>2.0.CO;2

[12]   Wilson, D., Leon, J., Aster, R., Ni, J., Schlue, J., Grand, S., Semken, S., Baldridge, S. and Gao, W. (2002) Broadband seismic background noise at temporary seismic stations observed on a regional scale in the southwestern United States. Bulletin of Seismological Society of America, 92, 3335-3341. doi:10.1785/0120010234

[13]   Parsons, T. and McCarthy, J. (1996) Crustal and upper mantle velocity structure of the Salton Trough southeast California. Tectonics, 15, 456-471. doi:10.1029/95TC02616

[14]   Parsons, T., McCarthy, J. and Thompson, G. (2001) Very different crustal response to extreme extension in the southern basin and range and Colorado Plateau transition. In: Erskine. M., Faulds, J., Bartley, J. and Rowley, G.B., Eds., American Association of Petroleum Geologists Pacific Section Guidebook, 291-304.

[15]   Fuis, G., Mooney, W., Healey, J., McMechan, G. and Lutter W. (1984) A seismic refraction survey of the Imperial Valley region, California. Journal of Geophysical Research, 89, 1165-1189. doi:10.1029/JB089iB02p01165

[16]   Larsen, S. and Reilinger, R. (1991) Age constraints for the present fault configuration in the Imperial Valley, California: Evidence for northwestward propagation of the Gulf of California rift system. Journal of Geophysical Research, 96, 10339-10446. doi:10.1029/91JB00618

[17]   Crowell, J. (1989) Sedimentation and tectonics along the San Andreas transform belt. In: Sylvester, A. and Crowell, J., Eds., Sedimentation and Tectonics of North America Belt, Field Trips for the 28th International Geological Congress, Washington DC, American Geophysical Union, 32-35

[18]   Burchfiel, B. and Stewart, J. (1966) Pull-apart origin of the central segment of the Death Valley, California. Geological Society of America Bulletin, 77, 439-442. doi:10.1130/0016-7606(1966)77[439:POOTCS]2.0.CO;2

[19]   Serpa, L., deVoogd, B., Wright, L., Willemin J., Oliver, Hauser, E. and Troxel, B. (1988) Structure of the central Death Valley pull apart basin and vicinity from the COCORP models in the southern Great Basin. Geological Society of America Bulletin, 100, 1437-1450. doi:10.1130/0016-7606(1988)100<1437:SOTCDV>2.3.CO;2

[20]   Ammon, C., Randall, G. and Zandt, G. (1990) On the nonuniqueness of receiver function inversions. Journal of Geophysical Research, 95, 15303-15318, doi:10.1029/JB095iB10p15303

[21]   Zhu, L. and Kanamori, H. (2000) Moho depth variation in southern California from teleseimic receiver functions. Journal of Geophysical Research, 105, 2969-2980. doi: 10.1029/1999JB900322

[22]   Ligorria, J. and Ammon, C. (1999) Iterative deconvolution and receiver function estimation. Bulletin of Seismological Society of America, 89, 1395-1400.

[23]   Webring, M. (1982) MINC, a gridding program based on minimum curvature. U.S .Geological Survey Open-File Report, 81-1224, 43.

[24]   Plouff, D. (1977) Preliminary documentation for a FORTRAN program to compute gravity terrain corrections based on topography digitized on a geographic grid. U.S. Geological Survey Open File Report 77-535, 45.

[25]   Hussein, M. (2007) Integrated and comparative geophysical studies of crustal structure of pull-apart basins: The Salton Trough and Death Valley, California regions. Ph.D. Dissertation, University of Texas at El Paso, El Paso.

[26]   Lewis, J., Day, S., Magistrale, H., Ealins, J. and Vernon, F. (2000) Regional crustal variations off the Peninsular Ranges, Southern California. Geology, 28, 303-306. doi:10.1130/0091-7613(2000)28<303:RCTVOT>2.0.CO;2

[27]   Lachenbruch, A., Sass, J. and. Galanis, S.Jr. (1985) Heat flow in southernmost California and the region of the Salton Trough. Journal of Geophysical Research, 90, 6709-6736. doi:10.1029/JB090iB08p06709

[28]   Lonsdale, P. (1989) Geological and tectonic history of the Gulf of California. In: Wintere, D., Husson, M. and R. Decker, R., Eds., The Eastern Pacific Ocean and Hawaii, Geological Society of America, N, 499-521.

[29]   Hussein, M., Serpa, L., Velasco, A. and Diane, D. (Unpublished) Imaging the deep structure of the Central Death Valley basin using receiver function, gravity, and magnetic data. International Journal of Geosciences.

[30]   Serpa, L. (1990) Structural styles across an extensional orogen; results from the COCORP Mojave and Death Valley seismic transects. In: Wernicke, B.P., Ed., Basin and Range Extensional Tectonics near the Latitude of Las Vegas, Nevada, Geological Society of America Memoir Boulder, Colorado, 176, 335-344

[31]   Hopper, J. and Buck, W. (1996) The effect of lower crustal flow on continental extension and passive margin formation. Journal of Geophysical Research, 101, 21175-20194. doi:10.1029/96JB01644

[32]   Braun, J. and Beaumont, C. (1987) Styles of continental rifting from dynamical models of lithospheric extension. Mem. Canadian Society Petroleum Geologists, 12, 241- 258.

[33]   Buck, W., Lavier, L. and Poliakov, A. (1999) How to make a rift wide. Philosophical Transactions of the Royal Society of London, 357, 671-693.

[34]   Brun, J. (1999) Narrow rifts versus wide rifts: Inferences for the mechanics of rifting from laboratory experiments, Philosophical Transactions of the Royal Society of London Ser. A—Mathematical Physical and Engineering Sciences, 357, 695-712.

[35]   Gonzalez-Fernandez, A., Daaobeitia, J., Delgado-Argote L., Michaud, F., Cordoba, D. and Bartolome, R. (2005) Mode of extension and rifting history of upper Tiburon and upper Delfin basins, northern Gulf of California. Journal of Geophysical Research, 110, B01313

[36]   Bialas, R. and Buck, W. (2009) How sediment promotes narrow rifting: Application to the Gulf of California, Tectonics, 28, TC4014.

[37]   Buck, W. (1991) Modes of continental lithospheric extension. Journal of Geophysical Research, 96, 20161- 20178.

[38]   Blakely, R., Jachens, R., Calzia, J. and Langenheim, V. (1999) Cenozoic basins of the Death Valley extended terrane as reflected in regional-scale gravity anomalies. In: Wright, L.A. and Troxel, B.W., Eds., Cenozoic Basins of the Death Valley Region, Geological Society of America Special Paper, Boulder, Colorado, 333, 1-16.

[39]   Dorsey, R. (2010) Sedimentation and crustal recycling along an active oblique-rift margin: Salton Trough and northern Gulf of California. Geological Society of America, 38, 443-446.

[40]   Muffler, L. and Doe, B. (1968) Composition and mean age of detritus of the Colorado River delta in the Salton Trough, southeastern California. Journal of Sedimentary Petrology, 38, 384-399.