Back
 JAMP  Vol.6 No.7 , July 2018
A Phenomenological Gradient Approach to Generalized Constitutive Equations for Isotropic Fluids
Abstract: An extension of the linear irreversible thermodynamics is proposed through the inclusion of the first gradients of velocity and of the classical local state parameters as additional independent variables in the fundamental energy state equation of a fluid system. We show that consistency of this hypothesis with the energy balance equation leads to generalized nonlinear constitutive equations, which we discuss in terms of an isotropic non-Newtonian viscous fluid.
Cite this paper: Salcido, A. (2018) A Phenomenological Gradient Approach to Generalized Constitutive Equations for Isotropic Fluids. Journal of Applied Mathematics and Physics, 6, 1494-1506. doi: 10.4236/jamp.2018.67126.
References

[1]   Malvern, L.E. (1969) Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

[2]   Müller, I. (1974) From Thermostatics to Thermodynamics. Discussion Paper. In: Domingos, J.J.D., Nina, M.N.R. and Whitelaw, J.H., Eds., Foundations of Continuum Thermodynamics, The MacMillan Press, Ltd., London, 23-34.

[3]   Müller, I. (2001) Extended Thermodynamics—The Physics and Mathematics of the Hyperbolic Equations of Thermodynamics. International Series of Numerical Mathematics, 141, 733-754.
https://doi.org/10.1007/978-3-0348-8372-6_27

[4]   Jou, D., Casas-Vazquez, J. and Lebon, G. (1999) Extended Irreversible Thermodynamics Re-Visited (1988-98). Reports on Progress in Physics, 62, 1035-1142.
https://doi.org/10.1088/0034-4885/62/7/201

[5]   García-Colín, L. (1995) Extended Irreversible Thermodynamics: An Unfinished Task. Molecular Physics, 86, 697-706.
https://doi.org/10.1080/00268979500102291

[6]   Salcido, A. (2008) A Non Local Equilibrium Model for the Constitutive Equations of Non-Uniform Simple Fluids. Proceedings of the 2nd IASTED International Symposium Modern Nonlinear Theory (MNT 2008). Orlando, 6-18 November 2008, 339-344.

[7]   Giusteri, G.G. and Seto, R. (2018) A Theoretical Framework for Steady-State Rheometry in Generic Flow Conditions. Journal of Rheology, 62, 713-723.
https://doi.org/10.1122/1.4986840

[8]   Mistura, L. (1985) The Pressure Tensor in Non Uniform Fluids. The Journal of Chemical Physics, 83, 3633-3637.
https://doi.org/10.1063/1.449170

[9]   Glavatskiy, K. (2011) Multicomponent Interfacial Transport. Described by the Square Gradient Model during Evaporation and Condensation. Springer Theses. Springer-Verlag, Berlin Heidelberg.

[10]   Morozov, A. and Spagnolie, S.E. (2015) Introduction to Complex Fluids. In: Spagnolie, S., Ed., Complex Fluids in Biological Systems. Biological and Medical Physics, Biomedical Engineering, Springer, New York.
https://doi.org/10.1007/978-1-4939-2065-5_1

[11]   Nguyen, Q.H. and Nguyen, N.D. (2012) Incompressible Non-Newtonian Fluid Flows. In: Gan, Y., Ed., Continuum Mechanics. Progress in Fundamentals and Engineering Applications, InTech, Rijeka, 47-72.
https://doi.org/10.5772/26091

[12]   Chhabra, R.P. (2010) Non-Newtonian Fluids: An Introduction. SERC School-cum-Symposium on Rheology of Complex Fluids, Chennai, 4-9 January 2010, 3-34.
https://doi.org/10.1007/978-1-4419-6494-6_1

[13]   Evans, D.J. (1979) Nonlinear Viscous Flow in the Lenard-Jones Fluid. Physics Letters A, 74, 229-232.

[14]   Evans, D.J. and Hanley, H.J.M. (1979) Shear Induced Phase Transitions in Simple Fluids. Physics Letters A, 79, 178-180.

[15]   Wang, B.Y. and Cummings, P.T. (1993) Non-Equilibrium Molecular Dynamics Calculation of the Shear Viscosity of Carbon Dioxide/Ethane Mixtures. Molecular Simulation, 10, 1-11.
https://doi.org/10.1080/08927029308022493

[16]   Marcelli, G., Todd, B.D. and Sadus, R.J. (2001) The Strain-Rate Dependence of Shear Viscosity, Pressure and Energy from Two-Body and Three-Body Interactions. Fluid Phase Equilibria, 183-184, 371-379.
https://doi.org/10.1016/S0378-3812(01)00449-6

[17]   Ahmed, A., Mausbach, P. and Sadus, R.J. (2009) Strain-Rate Dependent Shear Viscosity of the Gaussian Core Model Fluid. The Journal of Chemical Physics, 131, Article ID: 224511.
https://doi.org/10.1063/1.3273083

[18]   Yourgraw, W., van der Merwe, A. and Raw, G. (1966) Treatise on Irreversible and Statistical Thermophysics. The Macmillan Company, New York.

[19]   Truesdell, C. and Toupin, R.A. (1960) The Classical Field Theories. In: Flugge, S., Ed., Handbuck der Physik, Vol. III/I, Springer-Verlag, Berlin.

[20]   Oldroyd, J.G. (1950) On the Formulation of Rheological Equations of State. Proceedings of the Royal Society of London. Series A, 200, 523-541.
https://doi.org/10.1098/rspa.1950.0035

[21]   Astarita, G. and Marrucci, G. (1974) Principles of Non-Newtonian Fluid Mechanics. McGraw Hill, New York.

[22]   Truesdell, C. and Noll, W. (2004) The Non-Linear Field Theories of Mechanics. Springer, Berlin.
https://doi.org/10.1007/978-3-662-10388-3

[23]   Davis, H.T. and Scriven, L.E. (1982) Stress and Structure in Fluid Interfaces. In: Prigogine, I. and Rice, S.A., Eds., Advances in Chemical Physics, Vol. XLIX, Wiley, New York, 357-454.
https://doi.org/10.1002/9780470142691.ch6

[24]   Yang, A.J.M., Fleming III, P.D. and Gibbs, J.H. (1976) Molecular Theory of Surface Tension. The Journal of Chemical Physics, 64, 3732-3747.
https://doi.org/10.1063/1.432687

[25]   Bogoliubov, N.N. (1946) Problems of a Dynamical Theory in Statistical Physics. English Translation in Studies in Statistical Mechanics I, Part A, Uhlenbeck, Amsterdam.

[26]   Green, H.S. (1947) A General Kinetic Theory of Liquids. II. Equilibrium Properties. Proceedings of the Royal Society of London A, 189, 103-117.
https://doi.org/10.1098/rspa.1947.0031

[27]   Sahua, A.K., Chhabraa, R.P. and Eswaranb, V. (2009) Two-Dimensional Unsteady Laminar Flow of a Power Law Fluid across a Square Cylinder. Journal of Non-Newtonian Fluid Mechanics, 160, 157-167.
https://doi.org/10.1016/j.jnnfm.2009.03.010

[28]   Evans, D.J. (1981) Rheological Properties of Simple Fluids by Computer Simulation. Physical Review A, 23, 1988-1997.
https://doi.org/10.1103/PhysRevA.23.1988

[29]   Evans, D.J. and Hanley, H.J.M. (1980) A Thermodynamics of Steady Homogeneous Shear Flow. Physics Letters A, 80, 175-177.
https://doi.org/10.1016/0375-9601(80)90215-7

[30]   Kawasaki, K. and Gunton, J.D. (1973) Theory of Nonlinear Transport Processes: Nonlinear Shear Viscosity and Normal Stress Effects. Physical Review A, 8, 2048-2064.
https://doi.org/10.1103/PhysRevA.8.2048

 
 
Top