[1] [1]RockstrÖm, J., Steffen, W., Noone, K., Persson, Å., Chapin III, F.S., Lambin, E.F., Lenton, T.M., Scheffer, M., Folke, C., Schellnhuber, H.J. and Nykvist, B. (2009) A Safe Operating Space for Humanity. Nature, 461, 472-475.
[2] United Nations (2011) World Urbanization Prospects—The 2011 Revision. New York.
[3] Kalnay, E. and Cai, M. (2003) Impact of Urbanization and Land-Use Change on Climate. Nature, 423, 528-531.
https://doi.org/10.1038/nature01675
[4] Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K. and Helkowski, J.H. (2005) Global Consequences of Land Use. Science, 309, 570-574.
[5] Yang, P., Ren, G. and Yan, P. (2017) Evidence for a Strong Association of Short-Duration Intense Rainfall with Urbanization in the Beijing Urban Area. Journal of Climate, 30, 5851-5870.
https://doi.org/10.1175/JCLI-D-16-0671.1
[6] Suriya, S. and Mudgal, B.V. (2012) Impact of Urbanization on Flooding: The Thirusoolam Sub Watershed—A Case Study. Journal of Hydrology, 412, 210-219.
https://doi.org/10.1016/j.jhydrol.2011.05.008
[7] Aerts, J.C., Botzen, W.W., Emanuel, K., Lin, N., de Moel, H. and Michel-Kerjan, E.O. (2014) Evaluating Flood Resilience Strategies for Coastal Megacities. Science, 344, 473-475.
https://doi.org/10.1126/science.1248222
[8] Zheng, Z., Gao, J., Ma, Z., Wang, Z., Yang, X., Luo, X., Jacquet, T. and Fu, G. (2016) Urban Flooding in China: Main Causes and Policy Recommendations. Hydrological Processes, 30, 1149-1152.
https://doi.org/10.1002/hyp.10717
[9] Lu, P., Shen, Y.T. and Lin, T.H. (2017) Environmental Risks or Costs? Exploring Flooding and the Urban Heat Island Effect in Planning for Policymaking: A Case Study in the Southern Taiwan Science Park. Sustainability, 9, Article No. 2239.
https://doi.org/10.3390/su9122239
[10] Hilde, T.W. (2018) Green Infrastructure for Disaster Resilience: Exploring Connections with Scenario Planning. Doctoral Dissertation.
[11] Goodman, R. (1980) Taoism and Ecology. Environmental Ethics, 2, 73-80.
https://doi.org/10.5840/enviroethics19802115
[12] Ip, P.K. (1983) Taoism and the Foundations of Environmental Ethics. Environmental Ethics, 5, 335-343.
https://doi.org/10.5840/enviroethics19835414
[13] Ames, R.T. (1986) Taoism and the Nature of Nature. Environmental Ethics, 8, 317-350.
https://doi.org/10.5840/enviroethics19868438
[14] Higgins, L.T. and Zheng, M. (2002) An Introduction to Chinese Psychology—Its Historical Roots until the Present Day. The Journal of Psychology, 136, 225-239.
https://doi.org/10.1080/00223980209604152
[15] Li, K. and Xu, Z. (2006) Overview of Dujiangyan Irrigation Scheme of Ancient China with Current Theory. Irrigation and Drainage, 55, 291-298.
https://doi.org/10.1002/ird.234
[16] Cao, S., Liu, X. and Er, H. (2010) Dujiangyan Irrigation System—A World Cultural Heritage Corresponding to Concepts of Modern Hydraulic Science. Journal of Hydro-Environment Research, 4, 3-13.
https://doi.org/10.1016/j.jher.2009.09.003
[17] Khan, S., Tariq, R., Yuanlai, C. and Blackwell, J. (2006) Can Irrigation Be Sustainable? Agricultural Water Management, 80, 87-99.
https://doi.org/10.1016/j.agwat.2005.07.006
[18] Zhang, S., Yi, Y., Liu, Y. and Wang, X. (2012) Hydraulic Principles of the 2,268-Year-Old Dujiangyan Project in China. Journal of Hydraulic Engineering, 139, 538-546.
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000675
[19] Leandro, J., Schumann, A. and Pfister, A. (2016) A Step towards Considering the Spatial Heterogeneity of Urban Key Features in Urban Hydrology Flood Modelling. Journal of Hydrology, 535, 356-365.
[20] Yin, J., Yu, D. and Wilby, R. (2016) Modelling the Impact of Land Subsidence on Urban Pluvial Flooding: A Case Study of Downtown Shanghai, China. Science of the Total Environment, 544, 744-753.
https://doi.org/10.1016/j.scitotenv.2015.11.159
[21] Quimpo, R.G. (1984) Spatial Heterogeneity and Models of Surface Runoff. Journal of Hydrology, 68, 19-28.
[22] Irwin, E.G. and Bockstael, N.E. (2007) The Evolution of Urban Sprawl: Evidence of Spatial Heterogeneity and Increasing Land Fragmentation. Proceedings of the National Academy of Sciences, 104, 20672-20677.
https://doi.org/10.1073/pnas.0705527105
[23] Chang, H.S. and Chen, T.L. (2016) Spatial Heterogeneity of Local Flood Vulnerability Indicators within Flood-Prone Areas in Taiwan. Environmental Earth Sciences, 75, 1484.
https://doi.org/10.1007/s12665-016-6294-x
[24] Klosterman, R.E. (1999) The What If? Collaborative Planning Support System. Environment and Planning B: Planning and Design, 26, 393-408.
https://doi.org/10.1068/b260393
[25] Lin, H., Chen, M. and Lu, G. (2013) Virtual Geographic Environment: A Workspace for Computer-Aided Geographic Experiments. Annals of the Association of American Geographers, 103, 465-482.
https://doi.org/10.1080/00045608.2012.689234
[26] Arsham, H., Feuerverger, A., Mcleish, D.L., Kreimer, J. and Rubinstein, R.Y. (1989) Sensitivity Analysis and the “What If” Problem in Simulation Analysis. Mathematical and Computer Modelling, 12, 193-219.
https://doi.org/10.1016/0895-7177(89)90434-2
[27] Fletcher, T.D., Andrieu, H. and Hamel, P. (2013) Understanding, Management and Modelling of Urban Hydrology and Its Consequences for Receiving Waters: A State of the Art. Advances in Water Resources, 51, 261-279.
https://doi.org/10.1016/j.advwatres.2012.09.001
[28] Wu, X., Wang, Z., Guo, S., Liao, W., Zeng, Z. and Chen, X. (2017) Scenario-Based Projections of Future Urban Inundation within a Coupled Hydrodynamic Model Framework: A Case Study in Dongguan City, China. Journal of Hydrology, 547, 428-442.
https://doi.org/10.1016/j.jhydrol.2017.02.020
[29] Rizzi, S. (2009) What-If Analysis. Encyclopedia of Database Systems. Springer, Berlin, 3525-3529.
[30] Golfarelli, M., Rizzi, S. and Proli, A. (2006) Designing What-If Analysis: Towards a Methodology. Proceedings of the 9th ACM International Workshop on Data Warehousing and OLAP, Arlington, 10 November 2006, 51-58.
https://doi.org/10.1145/1183512.1183523
[31] Pettit, C., Keysers, J., Bishop, I. and Klosterman, R. (2008) Applying the What If? Planning Support System for Better Understanding Urban Fringe Growth. In: Landscape Analysis and Visualisation, Springer, Berlin, Heidelberg, 435-454.
[32] Brown, L.A. (1976) National Symposium on Urban Hydrology and Sediment Control. Proceedings: National Symposium on Urban Hydrology, Hydraulics, and Sediment Control, Vol. 111, Lexington, 27-29 July 1976, 99.
[33] Bicknell, B.R., Imhoff, J.C., Kittle Jr., J.L., Jobes, T.H., Donigian Jr., A.S. and Johanson, R. (2001) Hydrological Simulation Program-Fortran: HSPF Version 12 User’s Manual. AQUA TERRA Consultants, Mountain View.
[34] Terstriep, M.L. and Stall, J.B. (1974) The Illinois Urban Drainage Area Simulator, ILLUDAS. Bulletin (Illinois State Water Survey) No. 58.
[35] Ogden, F.L., Garbrecht, J., DeBarry, P.A. and Johnson, L.E. (2001) GIS and Distributed Watershed Models. II: Modules, Interfaces, and Models. Journal of Hydrologic Engineering, 6, 515-523.
https://doi.org/10.1061/(ASCE)1084-0699(2001)6:6(515)
[36] Mignot, E., Paquier, A. and Haider, S. (2006) Modeling Floods in a Dense Urban Area Using 2D Shallow Water Equations. Journal of Hydrology, 327, 186-199.
https://doi.org/10.1016/j.jhydrol.2005.11.026
[37] Xie, J., Chen, H., Liao, Z., Gu, X., Zhu, D. and Zhang, J. (2017) An Integrated Assessment of Urban Flooding Mitigation Strategies for Robust Decision Making. Environmental Modelling & Software, 95, 143-155.
https://doi.org/10.1016/j.envsoft.2017.06.027
[38] Lin, B., Zhou, L., Xu, D., Zhu, A.X. and Lu, G. (2018) A Discrete Global Grid System for Earth System Modeling. International Journal of Geographical Information Science, 32, 711-737.
https://doi.org/10.1080/13658816.2017.1391389
[39] Chang, T.J., Wang, C.H. and Chen, A.S. (2015) A Novel Approach to Model Dynamic Flow Interactions between Storm Sewer System and Overland Surface for Different Land Covers in Urban Areas. Journal of Hydrology, 524, 662-679.
https://doi.org/10.1016/j.jhydrol.2015.03.014
[40] Bisht, D.S., Chatterjee, C., Kalakoti, S., Upadhyay, P., Sahoo, M. and Panda, A. (2016) Modeling Urban Floods and Drainage Using SWMM and MIKE URBAN: A Case Study. Natural Hazards, 84, 749-776.
https://doi.org/10.1007/s11069-016-2455-1
[41] Lin, H., Batty, M., JØrgensen, S.E., Fu, B., Konecny, M., Voinov, A., Torrens, P., Lu, G., Zhu, A., Wilson, J.P. and Gong, J. (2015) Virtual Environments Begin to Embrace Process-Based Geographic Analysis. Transactions in GIS, 19, 493-498.
https://doi.org/10.1111/tgis.12167
[42] Egenhofer, M.J. and Herring, J. (1990) Categorizing Binary Topological Relations between Regions, Lines, and Points in Geographic Databases. The 9-Intersection: Formalism and Its Use for Naturallanguage Spatial Predicates.
[43] Cea, L., Legout, C., Darboux, F., Esteves, M. and Nord, G. (2014) Experimental Validation of a 2D Overland Flow Model Using High Resolution Water Depth and Velocity Data. Journal of Hydrology, 513, 142-153.
https://doi.org/10.1016/j.jhydrol.2014.03.052
[44] González, V.I., Carkovic, A.B., Lobo, G.P., Flanagan, D.C. and Bonilla, C.A. (2016) Spatial Discretization of Large Watersheds and Its Influence on the Estimation of Hillslope Sediment Yield. Hydrological Processes, 30, 30-39.
https://doi.org/10.1002/hyp.10559
[45] Dongquan, Z., Jining, C., Haozheng, W., Qingyuan, T., Shangbing, C. and Zheng, S. (2009) GIS-Based Urban Rainfall-Runoff Modeling Using an Automatic Catchment-Discretization Approach: A Case Study in Macau. Environmental Earth Sciences, 59, 465-472.
https://doi.org/10.1007/s12665-009-0045-1
[46] Tarasova, L., Knoche, M., Dietrich, J. and Merz, R. (2016) Effects of Input Discretization, Model Complexity, and Calibration Strategy on Model Performance in a Data-Scarce Glacierized Catchment in Central Asia. Water Resources Research, 52, 4674-4699.
https://doi.org/10.1002/2015WR018551
[47] Liu, Y., Zhang, W. and Zhang, Z. (2015) A Conceptual Data Model Coupling with Physically-Based Distributed Hydrological Models Based on Catchment Discretization Schemas. Journal of Hydrology, 530, 206-215.
https://doi.org/10.1016/j.jhydrol.2015.09.049
[48] Berry, P., Bonduá, S., Bortolotti, V., Cormio, C. and Vasini, E.M. (2014) A GIS-Based Open Source Pre-Processor for Georesources Numerical Modeling. Environmental Modelling & Software, 62, 52-64.
https://doi.org/10.1016/j.envsoft.2014.08.011
[49] Lee, S., Nakagawa, H., Kawaike, K. and Zhang, H. (2016) Urban Inundation Simulation Considering Road Network and Building Configurations. Journal of Flood Risk Management, 9, 224-233.
https://doi.org/10.1111/jfr3.12165
[50] Schubert, J.E., Sanders, B.F., Smith, M.J. and Wright, N.G. (2008) Unstructured Mesh Generation and Landcover-Based Resistance for Hydrodynamic Modeling of Urban Flooding. Advances in Water Resources, 31, 1603-1621.
https://doi.org/10.1016/j.advwatres.2008.07.012
[51] Chen, Y., Zhou, Q., Li, S., Meng, F., Bi, X., Wilson, J.P., Xing, Z., Qi, J., Li, Q. and Zhang, C. (2014) The Simulation of Surface Flow Dynamics Using a Flow-Path Network Model. International Journal of Geographical Information Science, 28, 2242-2260.
https://doi.org/10.1080/13658816.2014.917312
[52] Open Geospatial Consortium (2011) OpenGIS® Implementation Specification for Geographic Information-Simple Feature Access—Part 1: Common Architecture. OGC Document.
[53] Cheng, S.W., Dey, T.K. and Shewchuk, J. (2012) Delaunay Mesh Generation. CRC Press, Boca Raton.
[54] Yue, P., Di, L., Wei, Y. and Han, W. (2013) Intelligent Services for Discovery of Complex Geospatial Features from Remote Sensing Imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 83, 151-164.
https://doi.org/10.1016/j.isprsjprs.2013.02.015
[55] Clementini, E. and Di Felice, P. (1995) A Comparison of Methods for Representing Topological Relationships. Information Sciences—Applications, 3, 149-178.
https://doi.org/10.1016/1069-0115(94)00033-X
[56] Strobl, C. (2017) Dimensionally Extended Nine-Intersection Model (de-9im). In: Encyclopedia of GIS, Springer, Cham, 470-476.
https://doi.org/10.1007/978-3-319-17885-1_298
[57] Kim, S.W., Park, J.S., Kim, D. and Oh, J.M. (2014) Runoff Characteristics of Non-Point Pollutants Caused by Different Land Uses and a Spatial Overlay Analysis with Spatial Distribution of Industrial Cluster: A Case Study of the Lake Sihwa Watershed. Environmental Earth Sciences, 71, 483-496.
https://doi.org/10.1007/s12665-013-2933-7
[58] Bauer, S.W. (1974) A Modified Horton Equation for Infiltration during Intermittent Rainfall. Hydrological Sciences Journal, 19, 219-225.
https://doi.org/10.1080/02626667409493900
[59] Janowicz, K., Schade, S., BrÖring, A., Keßler, C., Maué, P. and Stasch, C. (2010) Semantic Enablement for Spatial Data Infrastructures. Transactions in GIS, 14, 111-129.
https://doi.org/10.1111/j.1467-9671.2010.01186.x
[60] Kolbe, T.H., GrÖger, G. and Plümer, L. (2005) CityGML: Interoperable Access to 3D City Models. In: Geo-Information for Disaster Management, Springer, Berlin, Heidelberg, 883-899.
https://doi.org/10.1007/3-540-27468-5_63
[61] Azhar, S., Nadeem, A., Mok, J.Y. and Leung, B.H. (2008) Building Information Modeling (BIM): A New Paradigm for Visual Interactive Modeling and Simulation for Construction Projects. 1st International Conference on Construction in Developing Countries, 4 August 2008, Vol. 1, 435-446.
[62] Zhu, J., Zhang, H., Yang, X., Yin, L., Li, Y., Hu, Y. and Zhang, X. (2016) A Collaborative Virtual Geographic Environment for Emergency Dam-Break Simulation and Risk Analysis. Journal of Spatial Science, 61, 133-155.
https://doi.org/10.1080/14498596.2015.1051148
[63] Liu, M., Zhu, J., Zhu, Q., Qi, H., Yin, L., Zhang, X., Feng, B., He, H., Yang, W. and Chen, L. (2017) Optimization of Simulation and Visualization Analysis of Dam-Failure Flood Disaster for Diverse Computing Systems. International Journal of Geographical Information Science, 31, 1891-1906.
https://doi.org/10.1080/13658816.2017.1334897
[64] Chen, M., Lin, H., Wen, Y., He, L. and Hu, M. (2012) Sino-VirtualMoon: A 3D Web Platform Using Chang’e-1 Data for Collaborative Research. Planetary and Space Science, 65, 130-136.
https://doi.org/10.1016/j.pss.2012.01.005
[65] Zhang, H., Zhu, J., Xu, Z., Hu, Y., Wang, J., Yin, L., Liu, M. and Gong, J. (2016) A Rule-Based Parametric Modeling Method of Generating Virtual Environments for Coupled Systems in High-Speed Trains. Computers, Environment and Urban Systems, 56, 1-3.
https://doi.org/10.1016/j.compenvurbsys.2015.11.003
[66] Lienert, C., Weingartner, R. and Hurni, L. (2009) Real-Time Visualization in Operational Hydrology through Web-Based Cartography. Cartography and Geographic Information Science, 36, 45-58.
https://doi.org/10.1559/152304009787340188
[67] Lienert, C., Weingartner, R. and Hurni, L. (2011) An Interactive, Web-Based, Real-Time Hydrological Map Information System. Hydrological Sciences Journal, 56, 1-6.
https://doi.org/10.1080/02626667.2010.536766
[68] Liu, W.C., Chen, W.B. and Hsu, M.H. (2011) Using a Three-Dimensional Particle-Tracking Model to Estimate the Residence Time and Age of Water in a Tidal Estuary. Computers & Geosciences, 37, 1148-1161.
https://doi.org/10.1016/j.cageo.2010.07.007