[1] Gandhi, R., Laroni, A. and Weiner, H.L. (2010) Role of the Innate Immune System in the Pathogenesis of Multiple Sclerosis. Journal of Neuroimmunology, 221, 7-14.
https://doi.org/10.1016/j.jneuroim.2009.10.015
[2] Hemmer, B., Kerschensteiner, M. and Korn, T. (2015) Role of the Innate and Adaptive Immune Responses in the Course of Multiple Sclerosis. The Lancet Neurology, 14, 406-419.
https://doi.org/10.1016/S1474-4422(14)70305-9
[3] Goldenberg, M.M. (2012) Multiple Sclerosis Review. Pharmacy and Therapeutics, 37, 175-184.
[4] Kingwell, E., et al. (2013) Incidence and Prevalence of Multiple Sclerosis in Europe: A Systematic Review. BMC Neurology, 13, 128.
[5] Segal, B.M. (2007) The Role of Natural Killer Cells in Curbing Neuroinflammation. Journal of Neuroimmunology, 191, 2-7.
https://doi.org/10.1016/j.jneuroim.2007.09.006
[6] Benczur, M., et al. (1980) Dysfunction of Natural Killer Cells in Multiple Sclerosis: A Possible Pathogenetic Factor. Clinical and Experimental Immunology, 39, 657-662.
[7] Merrill, J., Jondal, M., Seeley, J., Ullberg, M. and Sidén, A. (1982) Decreased NK Killing in Patients with Multiple Sclerosis: An Analysis on the Level of the Single Effector Cell in Peripheral Blood and Cerebrospinal Fluid in Relation to the Activity of the Disease. Clinical and Experimental Immunology, 47, 419-430.
[8] Duffy, S.S., Lees, J.G. and Moalem-Taylor, G. (2014) The Contribution of Immune and Glial Cell Types in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Multiple Sclerosis International, 2014, Article ID: 285245.
[9] Caligiuri, M.A. (2008) Human Natural Killer Cells. Blood, 112, 461-469.
https://doi.org/10.1182/blood-2007-09-077438
[10] Vranes, Z., Poljakovic, Z. and Marusic, M. (1989) Natural Killer Cell Number and Activity in Multiple Sclerosis. Journal of the Neurological Sciences, 94, 115-123.
https://doi.org/10.1016/0022-510X(89)90222-0
[11] Uchida, A., Maida, E.M., Lenzhofer, R. and Micksche1, M. (1982) Natural Killer Cell Activity in Patients with Multiple Sclerosis: Interferon and Plasmapheresis. Immunobiology, 160, 392-402.
https://doi.org/10.1016/S0171-2985(82)80003-X
[12] Hirsch, R.L. and Johnson, K.P. (1985) Natural Killer Cell Activity in Multiple Sclerosis Patients Treated with Recombinant Interferon-α2. Clinical Immunology and Immunopathology, 37, 236-244.
https://doi.org/10.1016/0090-1229(85)90155-2
[13] Braakman, E., van Tunen, A., Meager, A. and Lucas, C.J. (1986) Natural Cytotoxic Activity in Multiple Sclerosis Patients: Defects in IL-2/Interferon Gamma-Regulatory Circuit. Clinical & Experimental Immunology, 66, 285-294.
[14] Bielekova, B., et al. (2006) Regulatory CD56bright Natural Killer Cells Mediate Immunomodulatory Effects of IL-2Rα-Targeted Therapy (Daclizumab) in Multiple Sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 103, 5941-5946.
https://doi.org/10.1073/pnas.0601335103
[15] Kastrukoff, L.F., Lau, A., Wee, R., Zecchini, D., White, R. and Paty, D.W. (2003) Clinical Relapses of Multiple Sclerosis Are Associated with “Nove” Valleys in Natural Killer Cell Functional Activity. Journal of Neuroimmunology, 145, 103-114.
https://doi.org/10.1016/j.jneuroim.2003.10.001
[16] Feske, S., Wulff, H. and Skolnik, E.Y. (2015) Ion Channels in Innate and Adaptive Immunity. Annual Review of Immunology, 33, 291-353.
https://doi.org/10.1146/annurev-immunol-032414-112212
[17] Schwarz, E.C., Qu, B. and Hoth, M. (2013) Calcium, Cancer and Killing: The Role of Calcium in Killing Cancer Cells by Cytotoxic T Lymphocytes and Natural Killer Cells. Biochimica et BiophysicaActa (BBA)-Molecular Cell Research, 1833, 1603-1611.
https://doi.org/10.1016/j.bbamcr.2012.11.016
[18] Nilius, B. and Owsianik, G. (2011) The Transient Receptor Potential Family of Ion Channels. Genome Biology, 12, 218.
https://doi.org/10.1186/gb-2011-12-3-218
[19] Nilius, B. and Flockerzi, V. (2014) Mammalian Transient Receptor Potential (TRP) Cation Channels. Vol. 2, Springer, Berlin.
https://doi.org/10.1007/978-3-642-54215-2
[20] Fleig, A. and Penner, R. (2004) The TRPM Ion Channel Subfamily: Molecular, Biophysical and Functional Features. Trends in Pharmacological Sciences, 25, 633-639.
https://doi.org/10.1016/j.tips.2004.10.004
[21] Moran, M.M., McAlexander, M.A., Bíró, T. and Szallasi, A. (2011) Transient Receptor Potential Channels as Therapeutic Targets. Nature Reviews Drug Discovery, 10, 601-620.
https://doi.org/10.1038/nrd3456
[22] Clapham, D.E., Runnels, L.W. and Strübing, C. (2001) The TRP Ion Channel Family. Nature Reviews Neuroscience, 2, 387-396.
https://doi.org/10.1038/35077544
[23] Schattling, B., et al. (2012) TRPM4 Cation Channel Mediates Axonal and Neuronal Degeneration in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Nature Medicine, 18, 1805-1811.
https://doi.org/10.1038/nm.3015
[24] Paltser, G., et al. (2013) TRPV1 Gates Tissue Access and Sustains Pathogenicity in Autoimmune Encephalitis. Molecular Medicine, 19, 149-159.
https://doi.org/10.2119/molmed.2012.00329
[25] Grimm, C., Kraft, R., Sauerbruch, S., Schultzand, G. and Harteneck, C. (2003) Molecular and Functional Characterization of the Melastatin-Related Cation Channel TRPM3. Journal of Biological Chemistry, 278, 21493-21501.
https://doi.org/10.1074/jbc.M300945200
[26] Papanikolaou, M., Lewis, A. and Butt, A. (2017) Store-Operated Calcium Entry Is Essential for Glial Calcium Signalling in CNS White Matter. Brain Structure and Function, 222, 2993-3005.
https://doi.org/10.1007/s00429-017-1380-8
[27] Vriens, J., et al. (2011) TRPM3 Is a Nociceptor Channel Involved in the Detection of Noxious Heat. Neuron, 70, 482-494.
https://doi.org/10.1016/j.neuron.2011.02.051
[28] Oberwinkler, J. and Philipp, S. (2007) TRPM3. In: Flockerzi, V. and Nilius, B., Eds., Transient Receptor Potential (TRP) Channels, Springer, Berlin, 253-267.
https://doi.org/10.1007/978-3-540-34891-7_15
[29] Nguyen, T., Staines, D., Nilius, B., Smith, P. and Marshall-Gradisnik, S. (2016) Novel Identification and Characterisation of Transient Receptor Potential Melastatin 3 Ion Channels on Natural Killer Cells and B Lymphocytes: Effects on Cell Signalling in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients. Biological Research, 49, 27.
https://doi.org/10.1186/s40659-016-0087-2
[30] Zierler, S., Hampe, S. and Nadolni, W. (2017) TRPM Channels as Potential Therapeutic Targets against Pro-Inflammatory Diseases. Cell Calcium, 67, 105-115.
https://doi.org/10.1016/j.ceca.2017.05.002
[31] Launay, P., et al. (2004) TRPM4 Regulates Calcium Oscillations after T Cell Activation. Science, 306, 1374-1377.
https://doi.org/10.1126/science.1098845
[32] Nguyen, T., Johnston, S., Clarke, L., Smith, P. Staines, D. and Marshall‐Gradisnik, S. (2017) Impaired Calcium Mobilization in Natural Killer Cells from Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients Is Associated with Transient Receptor Potential Melastatin 3 Ion Channels. Clinical & Experimental Immunology, 187, 284-293.
https://doi.org/10.1111/cei.12882
[33] Willis, M.D. and Robertson, N.P. (2016) Alemtuzumab for Multiple Sclerosis. Current Neurology and Neuroscience Reports, 16, 84.
https://doi.org/10.1007/s11910-016-0685-y
[34] Jiang, L., et al. (2009) Variable CD52 Expression in Mature T Cell and NK Cell Malignancies: Implications for Alemtuzumab Therapy. British Journal of Haematology, 145, 173-179.
https://doi.org/10.1111/j.1365-2141.2009.07606.x
[35] Moreau, T., et al. (1994) Preliminary Evidence from Magnetic Resonance Imaging for Reduction in Disease Activity after Lymphocyte Depletion in Multiple Sclerosis. The Lancet, 344, 298-301.
https://doi.org/10.1016/S0140-6736(94)91339-0
[36] Coles, A.J., et al. (1999) Monoclonal Antibody Treatment Exposes Three Mechanisms Underlying the Clinical Course of Multiple Sclerosis. Annals of Neurology, 46, 296-304.
https://doi.org/10.1002/1531-8249(199909)46:3<296::AID-ANA4>3.0.CO;2-#
[37] Hu, Y., Turner, M.J., Shields J., et al. (2009) Investigation of the Mechanism of Action of Alemtuzumab in a Human CD52 Transgenic Mouse Model. Immunology, 128, 260-270.
https://doi.org/10.1111/j.1365-2567.2009.03115.x
[38] Polman, C.H., et al. (2011) Diagnostic Criteria for Multiple Sclerosis: 2010 Revisions to the McDonald Criteria. Annals of Neurology, 69, 292-302.
https://doi.org/10.1002/ana.22366
[39] Wagner, T.F., et al. (2008) Transient Receptor Potential M3 Channels Are Ionotropic Steroid Receptors in Pancreatic β Cells. Nature Cell Biology, 10, 1421-1430.
https://doi.org/10.1038/ncb1801
[40] Lytton, J., Westlin, M. and Hanley, M.R. (1991) Thapsigargin Inhibits the Sarcoplasmic or Endoplasmic Reticulum Ca-ATPase Family of Calcium Pumps. Journal of Biological Chemistry, 266, 17067-17071.
[41] Huth, T., Brenu E.W., Ramos, S., et al. (2016) Pilot Study of Natural Killer Cells in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis and Multiple Sclerosis. Scandinavian Journal of Immunology, 83, 44-51.
https://doi.org/10.1111/sji.12388
[42] Aubry, J.P., et al. (1999) Annexin V Used for Measuring Apoptosis in the Early Events of Cellular Cytotoxicity. Cytometry, 37, 197-204.
https://doi.org/10.1002/(SICI)1097-0320(19991101)37:3<197::AID-CYTO6>3.0.CO;2-L
[43] Rice, G.P.A., Casali, P., Merigan, T.C. and Oldstone, M.B.A. (1983) Natural Killer Cell Activity in Patients with Multiple Sclerosis Given α Interferon. Annals of Neurology, 14, 333-338.
https://doi.org/10.1002/ana.410140312
[44] Santoli, D., et al. (1981) Cytotoxic Activity and Interferon Production by Lymphocytes from Patients with Multiple Sclerosis. Journal of Immunology, 126, 1274-1278.
[45] Moretta, A., et al. (1991) CD69-Mediated Pathway of Lymphocyte Activation: Anti-CD69 Monoclonal Antibodies Trigger the Cytolytic Activity of Different Lymphoid Effector Cells with the Exception of Cytolytic T Lymphocytes Expressing T Cell Receptor Alpha/Beta. Journal of Experimental Medicine, 174, 1393-1398.
https://doi.org/10.1084/jem.174.6.1393
[46] Gross, C.C., et al. (2016) Alemtuzumab Treatment Alters Circulating Innate Immune Cells in Multiple Sclerosis. Neurology-Neuroimmunology & Neuroinflammation, 3, e289.
https://doi.org/10.1212/NXI.0000000000000289
[47] Laroni, A., et al. (2016) Dysregulation of Regulatory CD56bright NK Cells/T Cells Interactions in Multiple Sclerosis. Journal of Autoimmunity, 72, 8-18.
https://doi.org/10.1016/j.jaut.2016.04.003
[48] Alter, G., Malenfant, J.M. and Altfeld, M. (2004) CD107a as a Functional Marker for the Identification of Natural Killer Cell Activity. Journal of Immunological Methods, 294, 15-22.
https://doi.org/10.1016/j.jim.2004.08.008
[49] Saraste, M., Irjala, H. and Airas, L. (2007) Expansion of CD56Bright Natural Killer Cells in the Peripheral Blood of Multiple Sclerosis Patients Treated with Interferon-β. Neurological Sciences, 28, 121-126.
https://doi.org/10.1007/s10072-007-0803-3
[50] Lee, N., et al. (2003) Expression and Characterization of Human Transient Receptor Potential Melastatin 3 (hTRPM3). Journal of Biological Chemistry, 278, 20890-20897.
https://doi.org/10.1074/jbc.M211232200
[51] Harteneck, C. (2013) Pregnenolone Sulfate: From Steroid Metabolite to TRP Channel Ligand. Molecules, 18, 12012-12028.
https://doi.org/10.3390/molecules181012012