Comparative Study of Analytical Solutions for Time-Dependent Solute Transport Along Unsteady Groundwater Flow in Semi-infinite Aquifer

References

[1] S. Mohan and M. Muthukumaran, “Modeling of pollutant transport in groundwater,” Journal of Institution of Engineers (India): Environmental Division, Vol. 85, No. 1, 2004, pp. 22-32.

[2] H. D. Sharma and K. R. Reddy, “Geo-environmental Engi- neering,” John Willy & sons Inc., Hoboken, 2004.

[3] R. Rausch, W. Schafer, R. Therrien and C. Wagner, “Solute Transport Modelling: An Introduction to Models and Solu on Strategies,” Gebrüder Borntrager Verlagsbuchhandlung Science Publishers, Berlin, 2005.

[4] M. Thangarajan, “Groundwater: Resource Evaluation, Augmentation, Contamination, Restoration, Modeling and Management,” Capital Publishing Company, New Delhi, 2006.

[5] F. J. Leij, N. Toride and T. V. Genuchten, “Analytical Solution for Non-Equilibrium Solute Transport in Three- Dimension Porous Media,” Journal of Hydrology, Vol. 151, No. 2-4, 1993, pp. 193-228.
doi:10.1016/0022-1694(93)90236-3

[6] J. J. Fried, “Groundwater Pollution,” Elsevier Scientific Publishing Company, Amsterdam, 1975.

[7] I. C. Javendel and C. F. Tsang, “Groundwater Transport: Hand book of Mathematics Models,” Water Resource Monogrser, AGU, Washington, Vol. 10, 1984.

[8] J. Bear and A. Verruijt, “Modeling Groundwater Flow and Pollution,” D. Reidel Pubulising Company, Dor- drecht, 1987. doi:10.1007/978-94-009-3379-8

[9] M. P. Anderson and W. W. Woessner, “Applied Ground- water Modeling: Simulation of Flow and Advective Transport,” Academic Press, London, 1992.

[10] S. N. Rai, “Role of Mathematical Modeling in Ground- water Resources Management,” NGRI, Hyderabad, 2004.

[11] N. C. Ghosh and K. D. Sharma, “Groundwater Modelling and Management,” Capital Publishing Company, New- Delhi, 2006

[12] G. S. Kumar, M. Sekher and D. Mishra, “Time-Dependent Dispersivity Behaviour of Non Reactive Solutes in a System of Parallel Structures,” Hydrology and Earth System Sciences, Vol. 3, No. 3, 2006, pp. 895-923.
doi:10.5194/hessd-3-895-2006

[13] M. K. Singh, V. P. Singh, P. Singh and D. Shukla, “Analytical Solution for Conservative Solute Transport in One Dimensional Homogeneous Porous Formation with Time- Dependent Velocity,” Journal of Engineering Mechanics, Vol. 135, No. 9, 2009, pp. 1015-1021.
doi:10.1061/(ASCE)EM.1943-7889.0000018

[14] A. Kumar, D. K. Jaiswal and N. Kumar, “Analytical Solution to One Dimensional Advection-Diffusion Equation with Variable Coefficient in Semi-Infinite Media,” Journal of Hydrology, Vol. 380, No. 3-4, 2010, pp. 330-337. doi:10.1016/j.jhydrol.2009.11.008

[15] R. P. Banks and S. T. Jerasate, “Dispersion in Unsteady Porous Media Flow,” Journal of Hydraulic Division, Vol. 88, No. HY3, 1962, pp. 1-21.

[16] E. H. Ebach and R. White “Mixing of Fluid Flowing through Beds of Packed Solids,” Journal of American Institute of Chemical Engineers, Vol. 4, No. 2, 1958, pp. 161-164. doi:10.1002/aic.690040209

[17] R. R. Rumer, “Longitudinal Dispersion in Steady and Un- Steady Flow,” Journal of Hydraulic Division, Vol. 88, No. HY4, 1962, pp. 147-172.

[18] J. K. Mitchell, “Fundamentals of Soil Behavior,” Wiley, New York, 1976.

[19] J. Crank, “The Mathematics of Diffusion,” Oxford University Press, Oxford, 1975.

[20] A. Ogata, R. B. Banks, “A Solution of the Differential Equation of Longitudinal Dispersion in Porous Medium,” US Geological Survey, Washington D.C., 1961.

[21] M. Th. Van Genucheten and W. J. Alves, “Analytical Solutions for Chemical Transport with Simultaneous Adsorption, Zero-Order Production and finite Order Decay,” Journal of Hydrology, Vol. 49, No. 3-4, 1981, pp. 213-233. doi:10.1016/0022-1694(81)90214-6

[22] M. Th. Van Genucheten and W. J. Alves, “Analytical So- lution of One Dimensional Convective-Dispersion Solute Transport Equation,” Technical Bulletin, 1982, pp. 1-51.

[23] N. Kumar, “Dispersion of Pollutants in Semi-Infinite Porous Media with Unsteady Velocity Distribution,” Nordic Hydrology, Vol. 14, No. 3, 1983, pp. 167-178.

[24] F. T. Lindstrom and L. Boersma, “Analytical Solutions for Convective-Dispersive Transport in Confined Aquifers with Different Initial and Boundary Conditions,” Water Resources Research, Vol. 25, No. 2, 1989, pp. 241-256. doi:10.1029/WR025i002p00241

[25] D. A. Barry and G. Sposito, “Analytical Solution of a Convection-Dispersion Model with Time-Dependent Trans- port Coefficients,” Water Recourses Research, Vol. 25, No. 12, 1989, pp. 2407-2416.
doi:10.1029/WR025i012p02407

[26] H. A. Basha and F. S. El-Habel, “Analytical Solution of One Dimensional Time-Dependent Transport Equation,” Water Recourses Research, Vol. 29, No. 9, 1993, pp. 3209- 3214. doi:10.1029/93WR01038

[27] V. A. Fry, J. D. Istok and R. B. Guenther, “An Analytical Solution of the Solute Transport Equation with Rate- Limited Desorption and Decay,” Water Recourses Research, Vol. 29, No. 9, 1993, pp. 3201-3208.
doi:10.1029/93WR01394

[28] C. V. Chrysikopoulos and Y. Sim, “One-Dimensional Virus Transport Homogeneous Porous Media with Time Dependent Distribution Coefficient,” Journal of Hydrology, Vol. 185, No. 1-4, 1996, pp. 199-219.
doi:10.1016/0022-1694(95)02990-7

[29] J. D. Logan, “Solute Transport in Porous Media with Scale-Dependent Dispersion and Periodic Boundary Con- ditions,” Journal of Hydrology, Vol. 184, No. 3-4, 1996, pp. 261-276. doi:10.1016/0022-1694(95)02976-1

[30] M. Flury, Q. J. Wu, L. Wu and L. Xu, “Analytical Solu- tion for Solute Transport with Depth Dependent Trans- formation or Sorption Coefficient,” Water Recourses Re- search, Vol. 34, No. 11, 1998, pp. 2931-2937.
doi:10.1029/98WR02299

[31] N. Kumar and M. Kumar, “Solute Dispersion along Unsteady Groundwater Flow in a Semi-Infinite Aquifer,” Hydrology and Earth System Sciences, Vol. 2, No. 1, 1998, pp. 93-100. doi:10.5194/hess-2-93-1998

[32] Y. Sim and C. V. Chrysikopoulos, “Analytical Solutions for Solute Transport In Saturated Porous Media with Semi-Infinite Or Finite Thickness,” Advances in Water Recourses, Vol. 22, No. 5, 1999, pp. 507-519.
doi:10.1016/S0309-1708(98)00027-X

[33] A. Alshawabkeh and N. Rahbar, “A Parametric Study of One Dimensional Solute Transport in Deformable Porous Medium,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 8, 2006, pp. 100-1010.
doi:10.1061/(ASCE)1090-0241(2006)132:8(1001)

[34] V. Srinivasan and T. P. Clement, “Analytical Solutions for Sequentially Coupled One Dimensional Reactive Transport Problems-Part-I: Mathematical Derivations,” Advances in Water Recourses, Vol. 31, No. 2, 2008, pp. 203-218. doi:10.1016/j.advwatres.2007.08.002

[35] M. K. Singh, N. K. Mahato and P. Singh, “Longitudinal Dispersion with Time Dependent Source Concentration in Semi Infinite Aquifer,” Journal of Earth System Sciences, Vol. 117, No. 6, 2008, pp. 945-949.
doi:10.1007/s12040-008-0079-x

[36] J. Lee, P. J. Fox and J. J. Lenhart, “Investigation of Consolidation-Induced Solute Transport. I. Effect of Consolidation on solute Transport Parameters,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 9, 2009, pp. 1228-1238.
doi:10.1061/(ASCE)GT.1943-5606.0000047

[37] J. Lee and P. J. Fox, “Investigation of Consolidation- Induced Solute Transport. II. Experimental and Numerical Results,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 9, 2009, pp. 1239- 1253. doi:10.1061/(ASCE)GT.1943-5606.0000048

[38] Y. C. Li and P. J. Cleall, “Analytical solutions for Contaminant Diffusion in Double-Layered Porous Media,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 11, 2010, pp. 1542-1554.
doi:10.1061/(ASCE)GT.1943-5606.0000365