JWARP  Vol.10 No.7 , July 2018
Emerging Water Quality Issues along Rio de la Sabana, Mexico
Abstract: The basin of Rio de la Sabana is the largest tributary of the Tres Palos coastal lagoon in Southwest Mexico, east of Acapulco. This lagoon and its upstream basin areas have become a high priority area for the preservation of coastal and marine environments. To obtain information about water quality as affected by urban expansion since 2002, fourteen physicochemical parameters (temperature, pH, electrical conductivity, dissolved oxygen, ammonium, nitrate, nitrite, sulphate, phosphate), biochemical (biological and chemical oxygen demand, methylene blue active substances) and bacteriological parameters (total and fecal coliforms) were determined. This sampling was done for dry and rainy season conditions at seven locations (S1, S2, S3, …, S7) along the river, spaced 3 to 6 km apart to a total of 30.4 km. The results were grouped into four zones: (Z1) reference, (Z2) transition, (Z3) polluted, (Z4) recovery. The Alborada (S5) and Tunzingo (S6) sites, adjacent to dense high-class residential areas (Z3), had the greatest pollution charges in both seasons, while the La Poza (S7) site near the Tres Palos lagoon (Z4) showed a decrease in pollution. All parameters correlated with increasing head- to down-river sampling distance by following linear (pH, DO) or curvilinear patterns (all other parameters). Using sampling location and dry versus rainy sampling season as multivariate regression (predictor) variables led to least-squares capturing: 1) 66% to 95% of the T(°C), pH, DO, and PO3-4 variations, and 2) 57% to 96% of the log-linear variations of the other parameters. Among the parameters, T(°C), DO, and PO3-4 were not significantly affected by sampling season, while pH became so after deleting two higher than usual pH values at the S5 and S6 locations during the dry season.
Cite this paper: Pineda-Mora, D. , Toribio-Jiménez, J. , Ma, T. , Juárez-López, A. , González-González, J. , Ruvalcaba-Ledezma, J. , Batista-García, R. and Arp, P. (2018) Emerging Water Quality Issues along Rio de la Sabana, Mexico. Journal of Water Resource and Protection, 10, 621-636. doi: 10.4236/jwarp.2018.107035.

[1]   Sugandi, A., Astuti, W. and Erianto, E. (2017) Waterfront Development Concepts in Indonesia from the Perspective of Urban Planning and Environmental Sustainability. International Journal of Built Environment and Sustainability, 4, 146-155.

[2]   Gholami, S. and Srikantaswamy, S. (2009) Statistical Multivariate Analysis in the Assessment of River Water Quality in the Vicinity of KRS Dam, Karnataka, India. Natural Resources Research, 18, 235-247.

[3]   Mohamed, I., Othman, F., Ibrahim, A., Alaa-Eldin, M. and Yunus, R. (2016) Assessment of Water Quality Parameters Using Multivariate Analysis for Klang River Basin, Malaysia. Environmental Monitoring and Assessment, 187, 4182.

[4]   Martínez-Tavera, E., Rodríguez-Espinosa, P.F., Shruti, V.C., Sujitha, S.B., Morales-García, S.S. and Muñoz-Sevilla, S.P. (2017) Monitoring the Seasonal Dynamics of Physicochemical Parameters from Atoyac River Basin (Puebla), Central Mexico: Multivariate Approach. Environmental Earth Sciences, 76, 95.

[5]   Achieng’, A., Raburu P., Kipkorir, E., Ngodhe, S., Obiero, K. and Ani-Sabwa, J. (2017) Assessment of Water Quality Using Multivariate Techniques in River Sosiani, Kenya. Environmental Monitoring and Assessment, 189, 280.

[6]   Aruga, R., Negro, G. and Ostacoli, G. (1993) Multivariate Data Analysis Applied to the Investigation of River Pollution. Fresenius Journal of Analytical Chemistry, 346, 968-975.

[7]   Shrestha, S. and Kazama, F. (2007) Assessment of Surface Water Quality Using Multivariate Statistical Techniques: A Case Study of the Fuji River Basin, Japan. Environmental Modelling and Software, 22, 464-475.

[8]   Gutiérrez-Cacciabue, D., Teich, I., Poma, H., Cruz, M., Balzarini, M. and Rajal, B. (2014) Strategies to Optimize Monitoring Schemes of Recreational Waters from Salta, Argentina: A Multivariate Approach. Environmental Monitoring and Assessment, 186, 8359-8380.

[9]   Sharma, M., Kansal, A., Jain, S. and Sharma, P. (2015) Application of Multivariate Statistical Techniques in Determining the Spatial Temporal Water Quality Variation of Ganga and Yamuna Rivers Present in Uttarakhand State, India. Water Quality, Exposure, and Health, 7, 567-581.

[10]   Zheng, L.-Y., Yu, H.-B. and Wang, Q.-S. (2016) Application of Multivariate Statistical Techniques in Assessment of Surface Water Quality in Second Songhua River Basin, China. Journal of Central South University, 23, 1040-1051.

[11]   Wang, Y., Wang, P., Bai, Y., Tian, Z., Li, J., Shao, X., Mustavich, L. and Li, B. (2013) Assessment of Surface Water Quality via Multivariate Statistical Techniques: A Case Study of the Songhua River Harbin Region, China. Journal of Hydro-Environment Research, 7, 30-40.

[12]   CONAGUA, CAPASEG, CAPAMA. (2012) Plan operativo general: Proyecto de suministro de agua potable y saneamiento de las zonas marginadas del valle de la Sabana en el estado de Guerrero. Acapulco, Mexico: Comisión de Agua Potable, Alcantarillado y Saneamiento del Estado de Guerrero.

[13]   Rodríguez-Herrera, A.L., Olivier-Salomé, B., López-Velasco, R., Barragán-Mendoza, M., Cañedo-Villareal, R. and Valera-Pérez, M.A. (2013) Contaminación y riesgo sanitario en zonas urbanas de la subcuenca del Rio de la Sabana, ciudad de Acapulco, Mexico. Revista Gestión y Ambiente, 16, 85-96.

[14]   Arriaga-Cabrera, L., Aguilar-Sierra, J., Alcocer-Durand, R., Jiménez-Rosenberg, E., Muñoz-López, E. and Vázquez-Domínguez, E. (2008) Regiones hidrológicas prioritarias. Escala de Trabajo 1:4 000 000. 2a. Edición. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Mexico.

[15]   Villegas-Romero, I., Oropesa-Mota, J.L., Martínez-Ménes, M. and Mejía-Sáenz, E. (2009) Trayectoria y relación lluvia-escurrimiento causados por el Huracán Paulina en la cuenca del Rio de la Sabana, Guerrero, Mexico. Agrociencia, 43, 345-356.

[16]   INEGI (2010) Instituto Nacional de Estadística y Geografía. Recursos naturales.

[17]   NMX-AA-039-SCFI-2001 Waters Analysis—Determination of Methylene Blue Active Substances in Natural, Drinking, Wastewaters and Wastewaters Treated—Test Method.

[18]   CE-CCA-001/89 (1989) Acuerdo por el que se establecen los criterios ecológicos de la calidad del agua. Centro De Calidad Ambiental (Uninet).

[19]   CEQGs (1999) Canadian Water Quality Guidelines for the Protection of Aquatic Life Freshwater. Canadian Environmental Quality Guidelines, Canadian Council of Ministers of the Environment, Winnipeg.

[20]   CEQGs (2012) Canadian Water Quality Guidelines for the Protection of Aquatic Life: Nitrate. Canadian Environmental Quality Guidelines, Canadian Council of Ministers of the Environment, Winnipeg.

[21]   CONAGUA, Comisión Nacional del Agua (2015) Monitoreo de calidad del agua. Subdirección General Técnica. Gerencia de Calidad del agua.

[22]   EPA (2017) National Recommended Water Quality Criteria-Aquatic Life Criteria Table. Water Quality Criteria.

[23]   Singh, K., Malik, A., Mohan, D. and Sinha, S. (2004) Multivariate Statistical Techniques for the Evaluation of Spatial and Temporal Variations in Water Quality of Gomti River (India)—A Case Study. Water Research, 38, 3980-3992.

[24]   Araoye, P. (2009) The Seasonal Variation of pH and Dissolved Oxygen (DO2) Concentration in Asa Lake Ilorin, Nigeria. International Journal of Physical Sciences, 4, 271-274.

[25]   Ohrel, R. and Register, K. (2006) Oxygen. Volunteer Estuary Monitoring: A Methods Manual (9-1). U.S. Environmental Protection Agency (EPA), Office of Wetlands, Oceans and Watersheds, The Ocean Conservancy.

[26]   Zang, C., Huang, S., Wu, M., Du, S., Scholz, M., Gao, F., Lin, C., Guo, Y. and Doug, Y. (2011) Comparison of Relationships between pH, Dissolved Oxygen and Chlorophyll a for Aquaculture and Non-Aquaculture Waters. Water, Air, & Soil Pollution, 219, 157-174.