JSEA  Vol.4 No.11 , November 2011
A Petri Net Model for Part Sequencing and Robot Moves Sequence in A 2-Machine Robotic Cell
ABSTRACT
This paper deals with part sequencing and optimal robot moves sequence in 2-machine robotic cells according to Petri net graph. We have assumed that the robotic cell is capable of producing same and different parts. We have considered a new motion cycle for robot moves sequence which is the development of existing motion cycles in 2-machine robotic cells. The main goal of this study is to minimize the cycle time by determining the optimal part sequencing and robot moves sequence in the robotic cell. So, we have proposed a model based on Petri network.

Cite this paper
nullM. Fathian, I. Nakhai Kamalabadi, M. Heydari and H. Farughi, "A Petri Net Model for Part Sequencing and Robot Moves Sequence in A 2-Machine Robotic Cell," Journal of Software Engineering and Applications, Vol. 4 No. 11, 2011, pp. 603-608. doi: 10.4236/jsea.2011.411071.
References
[1]   S. P. Sethi and D. Groupe, “D’Etudes et de Recherche en Analyse des, Sequencing of Robot Moves and Multiple Parts in a Robotic Cell,” Groupe D’Etudes et de Recherche en Analyse des Decisions, Montreal, 1989.

[2]   S. P. Sethi, C. Sriskandarajah, G. Sorger, J. Blazewicz and W. Kubiak, “Sequencing of Parts and Robot Moves in a Robotic Cell,” International Journal of Flexible Manufacturing Systems, Vol. 4, 1992, pp. 331-358. doi:10.1007/BF01324886

[3]   Y. Crama and V. D. Klundert, “Cyclic Scheduling in 3-Machine Robotic Flow Shops,” Journal of Scheduling, Vol. 2, 1999, pp. 35-54. doi:10.1002/(SICI)1099-1425(199901/02)2:1<35::AID-JOS15>3.0.CO;2-J

[4]   N. Brauner and G. Finke, “On a Conjecture about Robotic Cells: New Simplified Proof for the Three Machine Case,” INFOR, Vol. 37, No. 1, 1999, pp. 20-36.

[5]   N. G. Hall, H. Kamoun and C. Sriskandarajah, “Scheduling in Robotic Cells: Complexity and Steady State Analysis,” European Journal of Operational Research, Vol. 109, 1998, pp. 43-65. doi:10.1016/S0377-2217(96)00333-5

[6]   N. G. Hall, H. Kamoun and C. Sriskandarajah, “Scheduling in Robotic Cells: Classification, Two and Three Machine Cells,” Operations Research, Vol. 45, 1997, pp. 421-439. doi:10.1287/opre.45.3.421

[7]   I. N. Kamalabadi, S. Gholami and A. H. Mirzaei, “A New Solution for the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem Based on the Particle Swarm Meta-Heuristic,” Journal of Industrial and Systems Engineering, Vol. 1, No. 4, 2008, pp. 304-317.

[8]   I. N. Kamalabadi, “A New Formulation for Scheduling Problems Through Petri-nets,” In The Iranian Mathematical Conference, Iran, 1996.

[9]   I. N. Kamalabadi, N. G. Hall and H. Sriskandarajah, “Minimizing Cycle Time in a blocking Flowshop,” Operations Research, Vol. 48, 2000, pp. 177-180. doi:10.1287/opre.48.1.177.12451

[10]   A. Agnetis, “Scheduling No-Wait Robotic Cells with Two and Three Machines,” European Journal of Operational Research, Vol. 123, 2000, pp. 303-314. doi:10.1016/S0377-2217(99)00258-1

[11]   A. Agnetis and D. Pacciarelli, “Part Sequencing in Three-Machine No-Wait Robotic Cells,” Operations Research Letters, Vol. 27, 2000, pp. 185-192. doi:10.1016/S0167-6377(00)00046-8

[12]   Y. Crama, V. Kats and V. D. Klundert, “Cyclic Scheduling in Robotic Flow Shops,” Annals of Operation Research: Mathematics of Industrial Systems, Vol. 96, 2000, pp. 97-124.

[13]   M. Dawande, H. N. Geismar, S. P. Sethi and C. Sriskandarajah, “Sequencing and Scheduling in Robotic Cells: Recent Developments,” Journal of Scheduling, Vol. 8, 2005, pp. 387-426. doi:10.1007/s10951-005-2861-9

[14]   I. G. Drobouchevitch, S. P. Sethi and C. Sriskandarajah, “Scheduling Dual Gripper Robotic Cell One Unit Cycles,” European Journal of Operational Research, Vol. 171, 2006, pp. 598-631. doi:10.1016/j.ejor.2004.09.019

[15]   V. Deineko and G. Steiner, “Robotic-Cell Scheduling: Special Polynomially Solvable Cases of the Traveling Salesman Problem on Permuted Monge Matrices,” Journal of Combinatorial Optimization, Vol. 9, No. 4, 2005, pp. 381-399. doi:10.1007/s10878-005-1778-8

[16]   M. S. Akturk, H. Gultekin and O. E. Karasan, “Robotic Cell Scheduling with Operational Flexibility,” Discrete Applied Mathematics, Vol. 145, 2000, pp. 334-348. doi:10.1016/j.dam.2004.02.012

[17]   H. Gultekin, M. S. Akturk and O. E. Karasan, “Cyclic Scheduling of a 2-Machine Robotic Cell with Tooling Constraints,” European Journal of Operational Research, Vol. 174, 2006, pp. 777-796. doi:10.1016/j.ejor.2005.03.021

[18]   H. Gultekin, M. S. Akturk and O. E. Karasan, “Scheduling in a Three-Machine Robotic Flexible Manufacturing Cell,” Computers & Operations Research, Vol. 34, 2007, pp. 2463-2477. doi:10.1016/j.cor.2005.09.015

[19]   C. Sriskandarajah, N. G. Hall, H. Kamoun and H. Wan, “Scheduling Large Robotic Cells without Buffers,” Annals of Operations Research, Vol. 76, 1998, pp. 287-321. doi:10.1023/A:1018952722784

[20]   T. P. Bagchi, J. N. D. Gupta and C. Sriskandarajah, “A Review of TSP Based Approaches for Flow shop Scheduling,” European Journal of Operational Research, Vol. 169, 2006, pp. 816-854. doi:10.1016/j.ejor.2004.06.040

[21]   Y. Crama, “Combinatorial Optimization Models for Production Scheduling in Automated Manufacturing Systems,” European Journal of Operational Research, Vol. 99, 1997, pp. 136-153. doi:10.1016/S0377-2217(96)00388-8

[22]   J. Maggot, “Performance Evaluation of Concurrent Systems Using Petri Nets,” Information Processing Letters, Vol. 8, No. 1, 1984, pp. 7-13. doi:10.1016/0020-0190(84)90067-X

 
 
Top