OJCE  Vol.8 No.2 , June 2018
Determination of an Equivalent Loading Circle Which May Represent the Loading of the Dual Wheels
Abstract: This work aims to look for a simplifying surface that can represent the effect of the dual wheels on the variation of the stress and deformation state prevailing during the passage of traffic loads. This was facilitated by the results of Thiam (2016) [4] obtained on the distribution of the vertical contact stress in the space described by the dual wheels. The analysis of the results of this study, on all the loading circles considered, shows that the radius loading circle equal to 0.181 m makes it possible to most probably represent the effect of the dual wheels. With this new surface, the effect of the dual wheels can be determined in 2D. The choice of this load is confirmed by a study in case of overload. Thus, the single axle with dual wheels is represented by a simplified diagram equipped on each side by a disk of radius 0.181 m. These results are obtained using a numerical simulation under Cast3M with a gravelly lateritic pavement.
Cite this paper: Thiam, B. , Samb, F. and Dione, A. (2018) Determination of an Equivalent Loading Circle Which May Represent the Loading of the Dual Wheels. Open Journal of Civil Engineering, 8, 234-244. doi: 10.4236/ojce.2018.82018.

[1]   Huang, Y.H. (1969) Computation of Equivalent Single Wheel Load Using Layered System. Highway Research Board, HRR, No. 291.

[2]   Hadi, A. (2009) Numerical Calculation for Equivalent Wheel Load (ESWL). College of Engineering, Al-Mustansiryiah University, Al Qadisiya Journal for Engineering sciences, Vol. 2.

[3]   Diakhaté, M. (2007) Fatigue et comportement des couches d’accrochage dans les structures de chaussée. Thèse de doctorat Génie civil, Université de Limoges, Limoges.

[4]   Thiam, B.B. (2016) Prise en compte de l’effet des roues jumelées sur le comportement des chaussées en graveleux latéritique. Mémoire de Master de recherche, UFR Science de l’Ingénieur—Université de Thiés.

[5]   De Beer, M., Fisher, C. and Fritz, J.J. (1997) Determination of Pneumatic Tire/Pavement Interface Contact Stresses Under Moving Loads and Some Effects on Pavements with Thin Asphalt Surfacing Layers. Proceedings of the 8th International Conference on Asphalt Pavements, Seattle, 10-14 August 1997, Volume I, 179-227.

[6]   Samb, F. (2014) Modélisation par éléments finis des chaussées en graveleux latéritiques traités ou non et application au dimensionnement mécanistique-empirique. Thèse de Doctorat Université de Thiès, Science de l’ingénieur.

[7]   Dione, A. (2015) Estimation du module réversible des Graves non traités et modélisation par éléments finis des chaussées souples en vue d’un dimensionnement Mécanistique-Empirique. Thèse de doctorat Géotechnique routière, Université de Thiès, Sciences de l’ingénieur.

[8]   Perret, J. and Dumont, A.G. (2004) Modélisation des charges de l’essieu. Rapport final parti 1, Mandat de recherche ASTRA 2000/421.

[9]   Gillespie, D., Karanuhao, M., Sayers, W., Nasim, A., Hasen, W., Ehsan and Cabon, D. (1993) Effects of Heavy—Vehicle Characteristic on Pavement Responses and Performance NCHRP Report 353. National Cooperative Highway Research Program, Transportation Research Board, Washington, p. 132.

[10]   LPC Test Method No. 39 (1997) Road Studies, Pavement Surface Deformability, Execution and Operation of Measurements.