[1] Kusakana, K. (2015) Operation Cost Minimization of Photovoltaic Diesel Battery Hybrid Systems. Energy, 85, 645-653.
https://doi.org/10.1016/j.energy.2015.04.002
[2] Kusakana, K. (2016) Optimal Scheduling for Distributed Hybrid System with Pumped Hydro Storage. Energy Conversion and Management, 111, 253-260.
https://doi.org/10.1016/j.enconman.2015.12.081
[3] Islam, R., Al Mamun, K. and Amanullah, M. (2017) Smart Energy Grid Design for Island Countries. In: Challenges and Opportunities Green Energy and Technology, Springer, USA.
https://doi.org/10.1007/978-3-319-50197-0
[4] Hassan, Q., Jaszczur, M. and Abdulateef, J. (2016) Optimization of PV/WIND/DIESEL Hybrid Power System in HOMER for Rural Electrification. Journal of Physics: Conference Series, 745, Article ID: 032006.
https://doi.org/10.1088/1742-6596/745/3/032006
[5] Liu, L.Q. and Liu, C.X. (2013) Feasibility Analyses of Hybrid Wind-PV-Battery Power System in Dongwangsha, Shanghai. Przegląd Elektrotechniczny, 1, 239-242.
[6] Moghaddam, I.G., Saniei, M. and Mashhour, E. (2016) A Comprehensive Model for Self-Scheduling an Energy Hub to Supply Cooling, Heating and Electrical Demands of a Building. Energy, 94, 157-170.
https://doi.org/10.1016/j.energy.2015.10.137
[7] India (2016) The MNRE Introduces a Policy For Hybrid Solar-Wind Power Projects Highlights of the Draft Wind—Solar Hybrid Policy, 2016.
[8] Dhakad, U. and Sharma, V. (2017) A Comprehensive Mathematical Modelling: Hybrid Energy Generation Systems Used for Non-Approachable Area Like Hills and Desert. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 6, 827-841.
[9] Bhandari, B., Poudel, S.R., Lee, K.-T. and Ahn, S.-H. (2014) Mathematical Modeling of Hybrid Renewable Energy System: A Review on Small Hydro-Solar-Wind Power Generation. International Journal of Precision Engineering and Manufacturing-Green Technology, 1, 157-173.
https://doi.org/10.1007/s40684-014-0021-4
[10] Venkata, S., Vulusala, G. and Sreedhar, M. (2017) Application of Superconducting Magnetic Energy Storage in Electrical Power and Energy Systems: A Review. International Journal of Energy Research, 42, 358-368.
[11] Bhandari, B., Poudel, S.R., Lee, K.T. and Ahn, S.H. (2014) Mathematical Modeling of Hybrid Renewable Energy System: A Review on Small Hydro-Solar-Wind Power Generation. International Journal of Precision Engineering and Manufacturing-Green Technology, 1, 157-173.
https://doi.org/10.1007/s40684-014-0021-4
[12] Ru, Y., Kleissl, J. and Martinez, S. (2013) Storage Size Determination for Grid-Connected Photovoltaic Systems. IEEE Transactions on Sustainable Energy, 4, 68-81.
https://doi.org/10.1109/TSTE.2012.2199339
[13] Khelif, A., Talha, A., Belhamel, M. and Hadj, A. (2012) Arab Feasibility Study of Hybrid Diesel-PV Power Plants in the Southern of Algeria: Case Study on AFRA Power Plant. International Journal of Electrical Power & Energy Systems, 43, 546-553.
https://doi.org/10.1016/j.ijepes.2012.06.053
[14] Ngan, M.S. and Tan, C.W. (2012) Assessment of Economic Viability for PV/Wind/Diesel Hybrid Energy System in Southern Peninsular Malaysia. Renewable and Sustainable Energy Reviews, 16, 634-647.
https://doi.org/10.1016/j.rser.2011.08.028
[15] Rehman, S. and Al-Hadhrami, L.M. (2010) Study of a Solar PV-Diesel-Battery Hybrid Power System for a Remotely Located Population near RAFHA, Saudi Arabia. Energy, 35, 4986-4995.
https://doi.org/10.1016/j.energy.2010.08.025
[16] Ibrahim, H., Younès, R., Basbous, T., Ilinca, A. and Dimitrova, M. (2011) Optimization of Diesel Engine Performances for a Hybrid Wind-Diesel System with Compressed Air Energy Storage. Energy, 36, 3079-3091.
https://doi.org/10.1016/j.energy.2011.02.053
[17] IEA (International Energy Agency) (2011) Co-Generation and Renewables, Solutions for a Low-Carbon Energy Future.
www.iea.org/Publications/Freepublications
[18] Chicco, G. and Mancarella, P. (2009) Matrix Modelling of Small Scale Trigeneration Systems and Application to Operational Optimization. Energy, 34, 261-273.
https://doi.org/10.1016/j.energy.2008.09.011
[19] Chicco, G. and Mancarella, P. (2009) Distributed Multi-Generation: A Comprehensive View. Renewable and Sustainable Energy Reviews, 13, 535-551.
https://doi.org/10.1016/j.rser.2007.11.014
[20] Hashim, H., Douglas, P., Elkamel, A. and Croiset, E. (2005) Optimization Model for Energy Planning with CO2 Emission Considerations. Industrial & Engineering Chemistry Research, 44, 879-890.
https://doi.org/10.1021/ie049766o
[21] Koeppel, G. and Andersson, G. (2009) Reliability Modeling of Multi-Carrier Energy Systems. Energy, 34, 235-244.
https://doi.org/10.1016/j.energy.2008.04.012
[22] Benato, A., Stoppato, A., Mirandola, A. and Destro, N. (2014) Optimal Design and Management of a Cogeneration System with Energy Storage. Proceedings of ECOS 2014 (Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems), Turku, Finland, 15-19 June 2014, 1-12.
[23] Dagdougui, H., Minciardi, R., Ouammi, A., Robba, M. and Sacile, R. (2012) Modeling and Optimization of a Hybrid System for the Energy Supply of a “Green” Building. Energy Conversion and Management, 64, 351-363.
https://doi.org/10.1016/j.enconman.2012.05.017
[24] Love, D.C., Uhl, M.S. and Genello, L. (2015) Energy and Water Use of a Small-Scale Raft Aquaponics System in Baltimore, Maryland, United States. Aquacultural Engineering, 6, 19-27.
https://doi.org/10.1016/j.aquaeng.2015.07.003
[25] Karimanzira, D. (2016) Chapter 5 Model Based Decision Support Systems. In: Rauschenbach, T., Ed., Modeling, Control and Optimization of Water Systems, Springer-Verlag, Berlin, Heidelberg, 185-220.
[26] Notton, G., Muselli, N., Poggi, P. and Louche, A. (2002) Decentralized Wind Energy Systems Providing Small Electrical Loads in Remote Areas. Fuel and Energy Abstracts, 43, 202.
https://doi.org/10.1016/S0140-6701(02)85860-X
[27] Rodolfo, B.A. and Jos, L. (2008) Multi-Objective Design of PV-Wind-Diesel-Hydrogen-Battery Systems. Renewable Energy, 33, 2559-2572.
https://doi.org/10.1016/j.renene.2008.02.027
[28] Villalva, M., Gazoli, J. and Filho, E. (2009) Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. IEEE Transactions on Power Electronics, 24, 1198-1208.
https://doi.org/10.1109/TPEL.2009.2013862
[29] Naghizadeh, R., Jazebi, S. and Vahidi, B. (2012) Modelling of Full Photovoltaic Systems Applied to Advanced Control Strategies. International Review on Modeling and Simulation, 5, 1780-1790.
[30] Tsai, H.-L., Tu, C.-S. and Su, Y.-J. (2016) Modeling of Photovoltaic Source, Modeling of Photovoltaic Systems Using MATLAB. 3985.
[31] El Fadara, A., Mimeta, A. and Pérez-Garcíab, M. (2009) Study of an Adsorption Refrigeration System Powered by Parabolic Trough Collector and Coupled with a Heat Pipe. Renewable Energy, 34, 2271-2279.
https://doi.org/10.1016/j.renene.2009.03.009
[32] Fuchs, E.F. and Masoum, M. (2011) Power Conversion of Renewable Energy Systems. Springer, Berlin.
[33] Hernandez, G.A.M., Mansoor, S.P. and Jones, D.L. (2012) Modelling and Controlling Hydropower Plants: International Review on Modeling and Simulation. Springer, London.
[34] Ramos-Paja, C.A., Carrejo, C.E., Simon-Muela, A., Estibals, B. and Alonso, C. (2010) Modeling of Full Photovoltaic Systems Applied to Advanced Control Strategies. Renewable Energy and Power Quality Journal (ICREPQ), 712-717.
[35] Wächter, A. (2002) An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process Engineering. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, USA.
[36] Franke, R. and Arnold, E. (1999) The Solver Omuses/HQP for Structured Large-Scale Constrained Optimization: Algorithm, Implementation and Example Application.
http://hqp.sourceforge.net/index.html
[37] Kloas, W., Gro, R., Baganz, D. and Rennert, B. (2012) A New Concept for Aquaponic Systems to Improve Sustainability, Increase Productivity, and Reduce Environmental Impacts. Aquaculture Environment Interactions, International Review on Modeling and Simulation, 7, 179-192.
[38] Energie GmbH, K.W. and Co, K.G. (2016) Smartblock 16s. Datenblatt Hocheffizienz-BHKW. Hg. v. KW Energie GmbH & Co. KG.
https://www.smartblock.eu/de/wp-content/uploads/sites/8/2016/04/KWE_smartblock_16s_NG_20160406.pdf
[39] Heckert Solar (2017) Polykristallines PV-Modul. NeMo P. Hg. Heckert Solar.
http://www.heckertsolar.com/de/produkte/solarmodule/solarmodul-nemor-60-p.html
[40] Gupta, M. and Chandra, P. (2002) Effect of Greenhouse Design Parameters on Conservation of Energy for Greenhouse Environmental Control. Energy, 27, 777-794.
https://doi.org/10.1016/S0360-5442(02)00030-0