Back
 JBM  Vol.6 No.6 , June 2018
Proinflammatory Pathways Engaged by Oral Pathogen Porphyromonas gingivalis in Upregulation of Matrix Metalloproteinase-9 Expression in Periodontal Disease
Abstract: Matrix metalloproteinase-9 (MMP-9) is a potent endopeptidase implicated in a wide range of inflammatory and neoplastic diseases, including chronic periodontitis, a persistent oral mucosal inflammation attributed primarily to infection by P. gingivalis. Here, we review the signaling pathways engaged by P. gingivalis in controlling the processing and secretion of MMP-9. The induction in oral mucosal expression of MMP-9 by P. gingivalis relays primarily on its key endotoxin, LPS, engagement of TLR4 and the activation of MAPK, ERK and p38 cascades implicated in the stimulation of Rac1 and cPLA2. The ERK-mediated cPLA2 phosphorylation plays an essential role in its membrane translocation with Rac1, while p38 localization with Rac1 promotes cPLA2 activation and the induction in MMP-9. Moreover, the induction in MMP-9 secretion by the LPS and the modulatory influence of peptide hormone, ghrelin, occur at the level of MMP-9 processing between ER and Golgi, with the involvement of factors that control secretory cargo sorting, Arf1 GTPase and PKD2. The secretion of MMP-9, furthermore, occurs in concert with the changes in stability dynamics of microtubules (MTs), which affect the Golgi localization of Arf1 and the recruitment and activation of PKD2. The induction in MMP-9 secretion by LPS is accompanied by the enhancement in MT stabilization and α-tubulin phosphorylation on Ser, while the MT destabilization associated with the modulatory influence of ghrelin, is manifested by α-tubulin phosphorylation on Tyr. Thus, the factors capable of affecting MT dynamics and MMP-9 secretion present a tempting target for the therapeutic intervention in the treatment of chronic periodontitis.
Cite this paper: Slomiany, B. and Slomiany, A. (2018) Proinflammatory Pathways Engaged by Oral Pathogen Porphyromonas gingivalis in Upregulation of Matrix Metalloproteinase-9 Expression in Periodontal Disease. Journal of Biosciences and Medicines, 6, 77-94. doi: 10.4236/jbm.2018.66006.
References

[1]   Bodet, C., Chandad, E. and Grenier, D. (2007) Pathogenic Potential of Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia, the Red Bacterial Complex Associated with Periodontitis. Pathologie Biologie, 55, 154-162.
https://doi.org/10.1016/j.patbio.2006.07.045

[2]   Eloe-Fadrosh, E.A. and Rosko, D.A. (2013) The Human Microbiome: From Symbiosis to Pathogenesis. Annual Review of Medicine, 64, 145-163.
https://doi.org/10.1146/annurev-med-010312-133513

[3]   How, K.Y., Song, K.P. and Chan, K.G. (2016) Porphyromonas gingivalis: An Overview of Periodontopathic Pathogen Below the Gum Line. Frontiers of Microbiology, 7, Article 53.
https://doi.org/10.3389/fmicb.2016.00053

[4]   Mysak, J., Pdzimek, S., Sommerova, P., Lyuya-Mi, Y., Bartova, J., Janatova, T., Prochazkova, J. and Duskova, J. (2014) Porphyromonas gingivalis: Major Periodontophatic Pathogen Overview. Journal of Immunology Research, 2014, Article ID: 476068.
https://doi.org/10.1155/2014/476068

[5]   Li, X., Koltveit, K.M., Tronstad, L. and Olsen, I. (2000) Systemic Diseases Caused by Oral Infection. Clinical Microbiology Reviews, 13, 547-558.
https://doi.org/10.1128/CMR.13.4.547-558.2000

[6]   Mehta, A. (2015) Risk Factors Associated with Periodontal Diseases and Their Clinical Considerations. International Journal of Contemporary Dental Medical Reviews, 1-15.

[7]   Hayashi, S., Yamada, H., Fukui, M., Ito, H.O. and Sata, M. (2015) Correlation between Arteriosclerosis and Periodontal Condition Assessed by Lactoferrin and a1-Antitrypsin Levels in Gingival Crevicular Fluid. International Heart Journal, 56, 639-643.
https://doi.org/10.1536/ihj.15-218

[8]   Koziel, J., Mydel, P. and Potempa, J. (2014) The Link between Periodontal Disease and Rheumatoid Arthritis: An Updated Review. Current Rheumatology Reports, 16, 408.
https://doi.org/10.1007/s11926-014-0408-9

[9]   Miklus, T.R., Payne, J.B., Thiele, G.M., et al. (2014) Periodontitis and Porphyromonas gingivalis in Patients with Rheumatoid Arthritis. Arthritis and Rheumatology, 66, 1090-1100.
https://doi.org/10.1002/art.38348

[10]   Inaba, H., Sugita, H., Kuboniwa, M., et al. (2014) Porphyromonas gingivalis Promotes Invasion of Oral Squamous Cell Carcinoma through Induction of ProMMP-9 and Its Activation. Cell Microbiology, 16, 131-145.
https://doi.org/10.1111/cmi.12211

[11]   Katz, J., Onate, M.D., Pauley, K.M., Bhattacharyya, I. and Cha, S. (2011) Presence of Porphyromonas gingivalis in Gingival Squamous Cell Carcinoma. International Journal of Oral Sciences, 3, 209-215.
https://doi.org/10.4248/IJOS11075

[12]   Datta, H.K., Ng, W.F., Walker, J.A., Tuck, S.P. and Varanasi, S.S. (2008) The Cell Biology of Bone Metabolism. Journal of Clinical Pathology, 61, 577-587.
https://doi.org/10.1136/jcp.2007.048868

[13]   Amano, A. (2007) Disruption of Epithelial Barrier and Impairment of Cellular Function by Porphyromonas gingivalis. Frontiers in Bioscience, 12, 3965-3974.
https://doi.org/10.2741/2363

[14]   Nagano, K., Hasegawa, Y., Yoshida, T. and Yoshimura, F. (2015) A Major Fimbrilin Variant of Mfa1 Fimbriae in Porphyromonas gingivalis. Journal of Dental Research, 94, 1143-1148.
https://doi.org/10.1177/0022034515588275

[15]   Bostanci, N. and Belibasakis, G.N. (2012) Porphyromonas gingivalis: An Invasive and Evasive Opportunistic Oral Pathogen. FEMS Microbiology Letters, 333, 1-9.
https://doi.org/10.1111/j.1574-6968.2012.02579.x

[16]   Kristoffersen, A.K., Solli, S.J., Nguyen, T.D. and Ensersen, M. (2015) Association of the rgpB Gigipain Genotype to the Major Fimbriae (fimA) Genetype in Clinical Isolates of the Periodontal Pathogen Porphyromonas gingivalis. Journal of Oral Microbiology, 7, Article ID: 29124.
https://doi.org/10.3402/jom.v7.29124

[17]   DeLeon-Pannell, K.Y., de Castro Bras, L.E. and Lindsey, M.L. (2013) Circulating Porphyromonas gingivalis Lipopolysaccharide Resets Cardiac Homeostasis in Mice through Matrix Metalloproteinase-9-Dependent Mechanism. Physiological Reports, 1, e00079.
https://doi.org/10.1002/phy2.79

[18]   Slomiany, B.L. and Slomiany, A. (2016) Role of Rac1/p38 and ERK-Dependent Cytosolic Phospholipase A2 Activation in Porphyromonas gingivalis-Evoked Induction in Matrix Metalloproteinase-9 (MMP-9) Release by Salivary Gland Cells. Journal of Biosciences and Medicines, 4, 68-79.
https://doi.org/10.4236/jbm.2016.44010

[19]   Sochalska, M. and Potempa, J. (2017) Manipulation of Neutrophils by Porphyromonas gingivalis in the Development of Periodontitis. Frontiers in Cellular and Infection Microbiology, 7, 197.
https://doi.org/10.3389/fcimb.2017.00197

[20]   Slomiany, B.L., Murty, V.L.N., Piotrowski, J., Liau, Y.H. and Slomiany, A. (1993) Glycosulfatase Activity of Porphyromonas gingivalis a Bacterium Associated with Periodontal Disease. Biochemistry and Molecular Biology International, 29, 973-980.

[21]   Wang, P.L. and Ohura, K. (2002) Porphyromonas gingivalis Lipopolysaccharide Signaling in Gingival Fibroblasts-CD14 and Toll-Like Receptors. Critical Reviews in Oral Biology and Medicine, 13, 132-142.
https://doi.org/10.1177/154411130201300204

[22]   Slomiany, B.L. and Slomiany, A. (2003) Activation of Peroxisome Proliferator-Activated Receptor γ Impedes Porphyromonas gingivalis Lipopolysaccharide Interference with Salivary Mucin Synthesis through Phosphatidylinositol 3-Kinase/ ERK Pathway. Journal of Physiology and Pharmacology, 54, 3-15.

[23]   Park, B.S. and Lee, J.O. (2013) Recognition of Lipopolysaccharide Pattern by TLR4 Complexes. Experimental & Molecular Medicine, 45, e66.

[24]   Amith, S.R., Abdulkhalek, S. and Szewczuk, M.R. (2016) Role of Glycosylation in Toll-Like Receptor Activation and Pro-Inflammatory Responses. In: Weiderschain, G., Ed., Glycobiology and Human Diseases, CRC, Boca Raton, FL, 165-184.

[25]   Slomiany, B.L. and Slomiany, A. (2017) Role of LPS-Elicited Signaling in Triggering Gastric Mucosal Inflammatory Responses to H. pylori: Modulatory Effect of Ghrelin. Inflammopharmacology, 25, 415-429.
https://doi.org/10.1007/s10787-017-0360-1

[26]   Smith, S.M. (2014) Role of Toll-Like Receptors in Helicobacter pylori Infection and Immunity. World Journal of Gastrointestinal Physiology, 5, 133-146.
https://doi.org/10.4291/wjgp.v5.i3.133

[27]   Coats, S.R., Jones, J.W., Do, C.T., Braham, P.M., Bainbridge, B.W., To, T.T., Goodlett, D.R., Ernst, R.K. and Darveau, R.P. (2009) Human Tool-Like Receptor 4 Responses to P. gingivalis Are Regulated by Lipid A 1- and 4’-Phosphatase Activities. Cellular Microbiology, 11, 1587-1599.
https://doi.org/10.1111/j.1462-5822.2009.01349.x

[28]   Trent, M.S., Stead, C.M., Tran, A.X. and Hankins, J.V. (2006) Diversity of Endotoxin and Its Impact on Pathogenesis. Journal of Endotoxin Research, 12, 205-223.

[29]   Slomiany, B.L. and Slomiany, A. (2005) Role of Modulation of Porphyromonas gingivalis Lipopolysaccharide-Induced Up-Regulation of Endothelin-1 in Salivary Gland Acinar Cells. IUBMB Life, 57, 591-595.
https://doi.org/10.1080/15216540500215598

[30]   Slomiany, B.L. and Slomiany, A. (2010) Suppression by Ghrelin of Porphyromonas gingivalis-Induced Constitutive Nitric Oxide Synthase S-nitrosylation and Apoptosis in Salivary Gland Acinar Cells. Journal of Signal Transduction, 2010, Article ID: 643642.
https://doi.org/10.1155/2010/643642

[31]   Slomiany, B.L. and Slomiany, A. (2011) Cyclooxygenase-2 S-Nitrosylation in Salivary Gland Acinar Cell Inflammatory Responses to Porphyromonas gingivalis: Modulatory Effect of Ghrelin. Advances in Bioscience and Biotechnology, 2, 434-442.
https://doi.org/10.4236/abb.2011.26064

[32]   Slomiany, B.L. and Slomiany, A. (2015) Porphyromonas gingivalis-Stimulated TACE Activation for TGF-α Ectodomain Shedding and EGFR Transactivation in Salivary Gland Cells Requires Rac1-Dependent p38 MAPK Membrane Localization. Journal of Biosciences and Medicines, 3, 42-53.
https://doi.org/10.4236/jbm.2015.311005

[33]   Slomiany, B.L. and Slomiany, A. (2018) Proinflammatory Signaling Cascades of Periodontopathic Oral Pathogen Porphyromonas gingivalis. Journal of Biosciences and Medicines, 6, 63-88.
https://doi.org/10.4236/jbm.2018.65009

[34]   Vandooren, J., Van den Steen, P.E. and Opdenakker, G. (2013) Bio-chemistry and Molecular Biology of Gelatinase B or Matrix Metalloproteinase-9 (MMP-9): The Next Decade. Critical Reviews in Biochemistry and Molecular Biology, 48, 222-272.
https://doi.org/10.3109/10409238.2013.770819

[35]   Ramm, M., Sherr, Y. and Shoenfeld, Y. (2006) Matrix Metalloproteinase-9 and Autoimmune Diseases. Journal of Clinical Immunology, 26, 299-307.
https://doi.org/10.1007/s10875-006-9022-6

[36]   Perez, P., Kwon, Y.J., Alliende, C., et al. (2005) Increased Acinar Damage of Salivary Glands of Patients with Sjogren’s Syndrome is Paralleled by Simultaneous Imbalance of Metalloproteinase-3/Tissue Inhibitor of Metalloproteinase-1 and Matrix Metalloproteinase-9/Tissue Inhibitor of Metallo-proteinases-1 Ratios. Arthritis & Rheumatism, 50, 2751-2760.
https://doi.org/10.1002/art.21265

[37]   Vilen, S.T., Salo, T., Sorsa, T. and Nyberg, P. (2013) Fluctuating Roles of Matrix Metalloproteinase-9 in Oral Squamous Cell Carcinoma. The Scientific World Journal, 2013, Article ID: 920595.
https://doi.org/10.1155/2013/920595

[38]   Ejeil, A.L., Igondio-Tchen, S., Ghomrasseni, S., Pellat, B., Godeau, G. and Gogly, B. (2003) Expression of Matrix Metalloproteinases (MMPs) and Tissue Inhibitors of Metalloproteinases (TIMPs) in Healthy and Diseased Human Gingiva. Journal of Periodontology, 74, 188-195.
https://doi.org/10.1902/jop.2003.74.2.188

[39]   Paulusova, V., Laco, J., Drizhal, I. and Slezak, R. (2012) Expression of Matrix Metalloproteinase-9 in Patients with Oral Lichen Planus. Acta Medica (Hradec Karlove), 55, 23-26.
https://doi.org/10.14712/18059694.2015.70

[40]   Claveau I., Mostefaoui, Y. and Rouabhia, M. (2004) Basement Membrane Protein and Matrix Metalloproteinase Deregulation in Engineered Human Oral Mucosa Following Infection with Candida albicans. Matrix Biology, 23, 477-486.
https://doi.org/10.1016/j.matbio.2004.08.006

[41]   Colombo, A.P., Boches, S.K. and Cotton, S.L. (2009) Comparisons of Subgingival Microbial Profiles of Refractory Periodontitis, Severe Periodontitis, and Periodontal Health Using the Human Oral Microbe Identification Microarray. Journal of Periodontology, 80, 1421-1432.
https://doi.org/10.1902/jop.2009.090185

[42]   Woo, C.H., Lim, J.H. and Kim, J.H. (2004) Lipopolysaccharide Induces Matrix Metalloproteinase-9 Expression via Mitochondrial Reactive Oxygen Species-p38 Kinase-Activator Protein-1Pathway in Raw 264.7 Cells. Journal of Immunology, 173, 6973-6980.
https://doi.org/10.4049/jimmunol.173.11.6973

[43]   Binker, M.G., Binker-Cosen, A., Richards, D., Oliver, B. and Coswn-Binker, L.I. (2009) LPS-stimulated MUC5AC Production Involves Rac-1-Dependent MMP-9 secretion and Activation in NCI-H292 Cells. Biochemical and Biophysical Research Communications, 386, 124-129.
https://doi.org/10.1016/j.bbrc.2009.05.136

[44]   Jotwani, R., Eswaran, S.V.K., Moonga, S. and Cutler, C.W. (2010) MMP-9/TIMP-1 Imbalance Induced in Human Dendritic Cells by Porphyromonas gingivalis. FEMS Immunology and Medical Microbiology, 58, 314-321.
https://doi.org/10.1111/j.1574-695X.2009.00637.x

[45]   Rautelin, H.I., Oksanen, A.M., Veijola, L.I., et al. (2009) Enhanced Systemic Metalloproteinase Response in Helicobacter pylori Gastritis. Annals of Medicine, 41, 208-215.
https://doi.org/10.1080/07853890802482452

[46]   Kubben, F.J.G.M., Sier, C.F.M., Schram, M., et al. (2007) Eradication of Helicobacter pylori Infection Favourably Affects Altered Gastric Mucosal MMP-9 Levels. Helicobacter, 12, 498-504.
https://doi.org/10.1111/j.1523-5378.2007.00527.x

[47]   Mori, N., Sato, H., Hayashibara, T., et al. (2003) Helicobacter pylori Induces Matrix Metalloproteinase-9 through Activation of Nuclear Factor Kappa B. Gastroenterology, 124, 983-992.
https://doi.org/10.1053/gast.2003.50152

[48]   Cuadrado, A. and Nebreda, A.R. (2010) Mechanism and Function of p38 MAPK Signaling. Biochemical Journal, 429, 403-417.
https://doi.org/10.1042/BJ20100323

[49]   Xu, P. and Derynck, R. (2010) Direct Activation of TACE-Mediated Ectodomain Shedding by p38 MAP Kinase Regulates EGF Receptor-Dependent Cell Proliferation. Molecular Cell, 37, 551-566.
https://doi.org/10.1016/j.molcel.2010.01.034

[50]   Slomiany, B.L. and Slomiany, A. (2006) Leptin Modulates the Detrimental Effect of Porphyromonas gingivalis Lipopolysaccharide-Induced Cytosolic Phospholipase A2 Activation on Salivary Mucin Synthesis via ERK-Signal Transduction. Inflammopharmacology, 14, 250-255.
https://doi.org/10.1007/s10787-006-1525-5

[51]   Kong, L. and Ge, B.X. (2008) MyD88-Independent Activation of a Novel Actin-Cdc42 /Rac Pathway Is Required for Toll-Like Receptor-Stimulated Phagocytosis. Cell Research, 18, 745-755.
https://doi.org/10.1038/cr.2008.65

[52]   Yao, H.Y., Chen, L., Wang, J., et al. (2011) Inhibition of Rac Activity Alleviates Lipopolysaccharide-Induced Acute Pulmonary Injury in Mice. Biochimica et Biophysica Acta, 1810, 666-674.
https://doi.org/10.1016/j.bbagen.2011.03.020

[53]   Brown, W.J., Chambers, K. and Doody, A. (2003) Phospholipase A2 (PLA2) Enzymes in Membrane Trafficking: Mediators of Membrane Shape and Function. Traffic, 4, 214-221.
https://doi.org/10.1034/j.1600-0854.2003.00078.x

[54]   You, H.J., Woo, C.H., Choi, E.Y., et al. (2005) Roles of Rac and p38 Kinase in the Activation of Cytosolic Phospholipase A2 in Response to PMA. Biochemical Journal, 388, 527-535.
https://doi.org/10.1042/BJ20041614

[55]   Evans, J.H., Gerber, S.H., Murray, D. and Leslie, C.C. (2004) The Calcium Binding Loops of the Cytosolic Phospholipase A2 C2 Domain Specifically Targeting to Golgi and ER in Live Cells. Molecular Biology of the Cell, 15, 371-383.
https://doi.org/10.1091/mbc.e03-05-0338

[56]   Hanania, R., Sun, H.S., Xu, K., et al. (2012) Classically Activated Macrophages Use Stable Microtubules for Matrix Metalloproteinase-9 (MMP-9) Secretion. Journal of Biological Chemistry, 287, 8468-8483.
https://doi.org/10.1074/jbc.M111.290676

[57]   Van den Steen, P.E., Van Aelst, I., Hvidberg, V., et al. (2006) The Hemopexin and O-Glycosylated Domains Tune Gelatinase B/MMP-9 Bioavailability via Inhibition and Binding to Cargo Receptors. Journal of Biological Chemistry, 281, 18626-18637.
https://doi.org/10.1074/jbc.M512308200

[58]   Rozengurt, E. (2011) Protein Kinase D Signaling: Multiple Biological Functions in Health and Disease. Physiology, 26, 23-33.
https://doi.org/10.1152/physiol.00037.2010

[59]   Bonnemaison, M.L., Eipper, B.A. and Mains, R.E. (2013) Role of Adaptor Proteins in Secretory Granule Biogenesis and Maturation. Frontiers in Endocrinology, 4, 101.
https://doi.org/10.3389/fendo.2013.00101

[60]   Bourgoin, S.G. and El Azreq, M.A. (2012) Small Inhibitors of ADP-Ribosylation Factor Activation and Function in Mammalian Cells. World Journal of Pharmacology, 1, 55-64.
https://doi.org/10.5497/wjp.v1.i4.55

[61]   Donaldson, J.G. and Jackson, C.L. (2011) ARF Family G Proteins and Their Regulators: Roles in Membrane Transport, Development and Disease. Nature Reviews Molecular Cell Biology, 12, 362-375.
https://doi.org/10.1038/nrm3117

[62]   Cherfils, J. and Zeghouf, M. (2013) Regulation of Small GTPases by GEFs, GAPs, and GDIs. Physiological Reviews, 93, 269-309.
https://doi.org/10.1152/physrev.00003.2012

[63]   Pusapati, G.V., Krndija, D., Armacki, M., von Wichert, G., et al. (2010) Role of the Second Cysteine-Rich Domain and Pro275 in Protein Kinase D2 Interaction with ADP-Ribosylation Factor 1, Trans-Golgi Network Recruitment, and Protein Transport. Molecular Biology of the Cell, 21, 1011-1022.
https://doi.org/10.1091/mbc.e09-09-0814

[64]   Wille, C., Kohler, C., Armacki, M., et al. (2014) Protein Kinase D2 Induces Invasion of Pancreatic Cancer Cells by Regulating Matrix Metalloproteinases. Molecular Biology of the Cell, 25, 324-336.
https://doi.org/10.1091/mbc.e13-06-0334

[65]   Eiseler, T., Wille, C., Koehler, C., Illing, A. and Seufferlein, T. (2016) Protein Kinase D2 Assembles a Multiprotein Complex at the Trans-Gologi Network to Regulate Matrix Metalloproteinase Secretion. Journal of Biological Chemistry, 291, 462-477.
https://doi.org/10.1074/jbc.M115.673582

[66]   Waldron, R.T. and Rosengurt, E. (2003) Protein Kinase C Phosphorylates Protein Kinase D Activation Loop Ser744 and Ser748 and Releases Autoinhibition by the Pleckstrin Homology Domain. Journal of Biological Chemistry, 278, 154-163.
https://doi.org/10.1074/jbc.M208075200

[67]   Ivison, S.M., Graham, N.R., Bernales, C.Q., et al. (2007) Protein Kinase D Interaction with TLR5 Is Required for Inflammatory Signal in Response to Bacterial Flagellin. Journal of Immunology, 178, 5735-5743.
https://doi.org/10.4049/jimmunol.178.9.5735

[68]   Lodeiro, M., Alen, B.O., Mosteiro, C.S., et al. (2011) The SHP-1 Protein Tyrosine Phosphatase Negatively Modulates Akt Signaling in the Ghrelin/GHSR1a System. Molecular Biology of the Cell, 22, 4182-4191.
https://doi.org/10.1091/mbc.e11-04-0373

[69]   Slomiany, B.L. and Slomiany, A. (2014) Modulation of Gastric Mucosal Inflammatory Responses to Helicobacter pylori via Ghrelin-Induced Protein Kinase Cδ Tyrosine Phosphorylation. Inflammopharmacology, 22, 251-262.
https://doi.org/10.1007/s10787-014-0206-z

[70]   Kojima, M., Hosoda, H., Date, Y., et al. (1999) Ghrelin Is a Growth-Hormone-Releasing Acetylated Peptide from Stomach. Nature, 402, 656-660.
https://doi.org/10.1038/45230

[71]   Groschl, M., Topf, H.G., Bohlender, J., et al. (2005) Identification of Ghrelin in Human Saliva: Production by Salivary Glands and Potential Role in Proliferation of Oral Keratinocytes. Clinical Chemistry, 51, 997-1006.
https://doi.org/10.1373/clinchem.2004.040667

[72]   Slomiany, B.L. and Slomiany, A. (2015) Porphyromonas gingivalis-Induced GEF Dock180 Activation by Src/PKCδ-Dependent Phosphorylation Mediates PLCγ2 Amplification in Salivary Gland Acinar Cells: Effect of Ghrelin. Journal of Biosciences and Medicines, 3, 66-77.
https://doi.org/10.4236/jbm.2015.37008

[73]   Huang, C.X., Yuan, M.J., Huang, H., et al. (2009) Ghrelin Inhibits Post-Infarct Myocardial Remodeling and Improves Cardiac Function through Anti-Inflammatory Effect. Peptides, 30, 2286-2291.
https://doi.org/10.1016/j.peptides.2009.09.004

[74]   Slomiany, B.L. and Slomiany, A. (2016) Role of α-Tubulin Acetylation and Protein Kinase D2 Ser/Tyr Phosphorylation in Modulation by Ghrelin of Porphyromonas gingivalis-Induced Enhancement in Matrix Metalloproteinase-9 (MMP-9) Secretion by Salivary Gland Cells. Journal of Biosciences and Medicines, 4, 82-94.
https://doi.org/10.4236/jbm.2016.47009

[75]   Goode, B.L., Drubin, D.G. and Barnes, G. (2000) Functional Cooperation between the Microtubule and Actin in Cytoskeletons. Current Opinions in Cell Biology, 12, 63-71.
https://doi.org/10.1016/S0955-0674(99)00058-7

[76]   Schnaeker, E.F., Ossig, R., Ludwig, T., et al. (2004) Microtubule-Dependent Matrix Metalloproteinase-2/Matrix Metalloproteinase-9 Exocytosis: Prerequisite in Human Melanoma Cell Invasion. Cancer Research, 64, 8924-8931.

[77]   Gu, S., Liu, Y., Zhu, B., et al. (2016) Loss of α-Tubulin Acetylation Is Associated with TGF-β-Induced Epithelial-Mesenchymal Transition. Journal of Biological Chemistry, 291, 5396-5405.
https://doi.org/10.1074/jbc.M115.713123

[78]   Howes, S.C., Alushin, G.M., Shida, T., Nachury, M.V. and Nogales, E. (2014) Effects of Tubulin Acetylation and Tubulin Acetyltransferase Binding on Microtubule Structure. Molecular Biology of the Cell, 25, 257-266.
https://doi.org/10.1091/mbc.e13-07-0387

[79]   Sbai, O., Ould-Yahoui, A., Ferhart, I., et al. (2010) Differential Vesicular Distribution and Trafficking of MMP-2, MMP-9, and Their Inhibitors in Astrocytes. Glia, 58, 344-366.

[80]   Yu, Y., Gaillard, S., Phillip, J.M., et al. (2015) Inhibition of Spleen Tyrosine Kinase Potentiates Paclitaxel-Induced Cytotoxicity in Ovarian Cancer Cells by Stabilizing Microtubules. Cancer Cell, 28, 82-96.
https://doi.org/10.1016/j.ccell.2015.05.009

[81]   Nirschl, J.J., Magiera, M.M., Lazarus, J.E., Janke, C. and Holzbaur, E.L.F. (2016) α-Tubulin Tyrosination and CLIP-170 Phosphorylation Regulate the Initiation of Dynein-Driven Transport in Neurons. Cell Reports, 14, 2637-2652.
https://doi.org/10.1016/j.celrep.2016.02.046

[82]   Jordan, M.A. and Wilson, L. (2004) Microtubules as a Target for Anticancer Drugs. Nature Reviews, 4, 253-265.
https://doi.org/10.1038/nrc1317

[83]   Fourest-Lieuvin, A., Peris, L., Gache, V., et al. (2006) Microtubule Regulation in Mitosis: Tubulin Phosphorylation by the Cyclin-Dependent Kinase Cdk1. Molecular Biology of the Cell, 17, 1041-1050.
https://doi.org/10.1091/mbc.e05-07-0621

[84]   De, S., Tsimounis, A., Chen, X. and Rotenberg, S.A. (2014) Phosphorylation of α-Tubulin by Protein Kinase C Stimulates Microtubule Dynamics in Human Breast Cells. Cytoskeleton, 71, 252-272.
https://doi.org/10.1002/cm.21167

[85]   Slomiany, B.L. and Slomiany, A. (2017) Helicobacter pylori-Induced Changes in Microtubule Dynamics Conferred by α-Tubulin Phosphorylation on Ser/Tyr Mediate Gastric Mucosal Secretion of Matrix Metalloproteinase-9 (MMP-9) and Its Modulation by Ghrelin. Inflammopharmacology, 24, 197-205.
https://doi.org/10.1007/s10787-016-0278-z

[86]   Slomiany, B.L. and Slomiany, A. (2018) Role of Protein Kinase Cδ-Mediated Spleen Tyrosine Kinase (Syk) Phosphorylation on Ser in the Amplification of Oral Mucosal Inflammatory Responses to Porphyromonas gingivalis. Journal of Biosciences and Medicines, 6, 70-85.
https://doi.org/10.4236/jbm.2018.63005

[87]   Slomiany, B.L. and Slomiany, A. (2017) Role of Signal-Regulated Changes in Microtubule Stability Dynamics through α-Tubulin Phosphorylation on Ser/Tyr in Modulation of Salivary Gland Matrix Metalloproteinase-9 (MMP-9) Secretion in Response to Porphyromonas gingivalis and Ghrelin. Journal of Biosciences and Medicines, 5, 22-38.
https://doi.org/10.4236/jbm.2017.52003

[88]   Halade, G.V., Jin, Y.F. and Lindsey, M.R. (2013) Matrix Metalloproteinase (MMP)-9: A Proximal Biomarker for Cardiac Remodeling and a Distal Biomarker for Inflammation. Pharmacology & Therapeutics, 139, 32-40.
https://doi.org/10.1016/j.pharmthera.2013.03.009

[89]   Yabluchanskiy, A., Ma, Y., Iyer, R.P., Hall, M.E. and Lindsey, M.L. (2013) Matrix Metalloproteinase-9: Many Shades of Function in Cardiovascular Disease. Physiology (Bethesda), 28, 391-403.
https://doi.org/10.1152/physiol.00029.2013

 
 
Top