MSA  Vol.9 No.7 , June 2018
Polymer Analyses for an Adapted Process Design of the Pipe-Extrusion of Polyetherimide
Abstract: Over the last years, the use of high performance thermoplastic materials increased significantly especially in aviation applications. Thus, the processing of these high temperature polymers became more and more interesting. Especially, the groups of polymers like polyphenylene sulfide (PPS), polyether ether ketone (PEEK) or polyetherimide (PEI) are in the focus of recent developments and investigations. These materials show excellent thermal, mechanical and chemical properties while processing remains still challenging. Especially the influence of processing temperatures, temperature depending viscosities, the specific heat capacities and the thermal expansion show a high impact to the quality of the produced parts, e.g. degradation and dimensionally stability. Thus, this paper shows experimental characterizations in regard to the processing of PEI by pipe extrusion processes. In this context, a suitable methodology for the determination of appropriate process parameters is shown, which includes the comprehensive determination of temperature dependent thermal, thermomechanical and degradation properties of specific PEI extrusion materials.
Cite this paper: Stegelmann, M. , Müller, M. , Winkler, A. , Liebsch, A. and Modler, N. (2018) Polymer Analyses for an Adapted Process Design of the Pipe-Extrusion of Polyetherimide. Materials Sciences and Applications, 9, 614-624. doi: 10.4236/msa.2018.97044.

[1]   Rauwendaal, C. (2014) Polymer Extrusion. Carl Hanser Verlag GmbH & Company KG, Munich.

[2]   Stegelmann, M., Lucas, P., Müller, M., Grüber, B., Modler, N. and Nebel, D. (2015) Extrusion of High-Performance Polyetherimide Pipe Systems for Aircrafts. SAMPE Conference Proceedings, May 2016, Long Beach.

[3]   Dominguez, S., Derail, C., Léonardi, F., Pascal, J. and Brulé, B. (2015) Study of the Thermal Properties of Miscible Blends between Poly Ether Ketone Ketone (PEKK) and Polyimide. European Polymer Journal, 62, 179-185.

[4]   Sabic (2014) ULTEMTM Resin 1000.

[5]   Sabic (2014) ULTEMTM Resin 9075.

[6]   Sabic (2014) ULTEMTM Resin CRS 5001.

[7]   Saul, K. (2011) Automatisierte Auslegung von Extrusionswerkzeugen. Fakultat für Ingenieurwissenschaften Maschinenbau und Verfahrenstechnik. Dissertation, Universitat Duisburg-Essen, Duisburg.

[8]   Domininghaus, D.-I.H. (2013) Kunststoffe: Eigenschaften und Anwendungen. Springer-Verlag, Berlin.

[9]   Haberstroh, E. (1981) Analysis of Cooling Sections in Extrusion Lines. Dissertation, RWTH Aachen University, Aachen.

[10]   Te Heesen, O. and Wortberg, J. (2014) A New Possibility of Melt Cooling in Extrusion Dies to Prevent Sagging-Effects in Thick-Walled Pipes. AIP Conference Proceedings, 1593, 133-136.

[11]   Janas, M.L. (2015) Eine Neuartige Numerische Methode zur Optimierung und Intensivierung der Blasfolienkühlung. Dissertation, University of Duisburg-Essen, Duisburg.

[12]   Te Heesen, O. (2015) Ganzeitlicher Ansatz zur Dimensionierung und Optimierung von Extrusionswerkzeugen am Beispiel von Wendelverteilern. Dissertation, University of Duisburg-Essen, Duisburg.

[13]   Sabic (2016) Lightweight + Compliant—Next Generation Solutions for Aircraft Interior Designers.

[14]   Schobesberger, M. (1994) High-Tech for High-Performance-Uses of Polyimide. Kunststoffe, 84, 759-761.

[15]   Catsman, P. (2005) Polyetherimid. Kunststoffe, 10, 143-146.

[16]   Belana, J., Canadas, J.C., Diego, J.A., Mudarra, M., Díaz, R., Friederichs, S., Jaimes, C. and Sanchis, M.J. (1999) Physical Ageing Studies in Polyetherimide ULTEM 1000. Polymer International, 46, 29-32.

[17]   He, Y. (2015) Rapid Thermal Conductivity Measurement with a Hot Disk Sensor. Thermochimica Acta, 436, 130-134.

[18]   Gustavsson, M., Karawacki, E. and Gustafsson, S.E. (1994) Thermal Conductivity, Thermal Diffusivity, and Specific Heat of Thin Samples from Transient Measurements with Hot Disk Sensors. Review of Scientific Instruments, 65, 3856.

[19]   Schawe, J.E.K., Hütter, T., Heitz, C., Alig, I. and Lellinger, D. (2006) Stochastic Temperature Modulation: A New Technique in Temperature-Modulated DSC. Thermochimica Acta, 446, 147-155.

[20]   Haines, P.J. (1995) Thermal Methods of Analysis—Principles, Applications and Problems. Springer Science + Business Media, Berlin.