WJNS  Vol.1 No.3 , November 2011
The influence of NMDA receptor 2B subunit (GRIN2B) on cortical electrical oscillation
ABSTRACT
The N-methyl D-aspartate receptor (NMDAR) is composed of several subunits. Among them, the N2B is of interest, given its dominance in early develop-ment and its significant impact on neuronal channel functioning and the formation or maintenance of cellular architecture. NMDAR-N2B, also named GRIN2B, has been implicated in broad neuro-psychiatric conditions. However, the genetic impact on cortical oscillation in the human brain is still unclear. This study examined the modulatory ef-fects of a silent mutation C2644T polymorphism on the EEG oscillation. Blood samples were collected and resting state eyes-closed EEG signals were re-corded in 256 young healthy females, stratified into three groups according to genotypes C/C, C/T and T/T. The values of the mean power of 18 electrodes across delta, theta, alpha, beta and gamma frequencies were analyzed. Between-group statistics were determined by ANOVA and independent t-test; and a global trend of regional power was quantified by non-parametric analyses. No significant be-tween-group differences were noticed with the statis-tical threshold after Bonferroni correction. At less conservative threshold of P < 0.01, C/T group had higher regional power at sparse electrode-frequency pairs in posterior brain regions. However, a consis-tent global trend was noticed wherein the C/T group possessed higher EEG powers, regardless of spectral bands. Nonparametric analyses confirmed this ob-servation. Our results implied that the heterozygous group of GRIN2B C2744T was associated with higher neural synchronization during relaxation, which may be relevant to the impact of GRIN2B in early devel-opment and the inverted-U-shaped response in the NMDA system.

Cite this paper
nullLee, T. , Yu, Y. , Hong, C. , Tsai, S. , Wu, H. and Chen, T. (2011) The influence of NMDA receptor 2B subunit (GRIN2B) on cortical electrical oscillation. World Journal of Neuroscience, 1, 38-44. doi: 10.4236/wjns.2011.13006.
References
[1]   Li, D. and He, L. (2007) Association study between the NMDA receptor 2B subunit gene (GRIN2B) and schizophrenia: A HuGE review and meta-analysis. Genetics in Medicine, 9, 4-8. doi:10.1097/01.gim.0000250507.96760.4b

[2]   Liu, Y., Wong, T.P., Aarts, M., Rooyakkers, A., Liu, L., Lai, T.W., Wu, D.C., Lu, J., Tymianski, M., Craig, A.M. and Wang, Y.T. (2007) NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. Journal of Neuroscience, 27, 2846-2857. doi:10.1523/JNEUROSCI.0116-07.2007

[3]   Jiang, H. and Jia, J. (2009) Association between NR2B subunit gene (GRIN2B) promoter polymorphisms and sporadic Alzheimer’s disease in the North Chinese popu- ation. Neuroscience Letters, 450, 356-360. doi:10.1016/j.neulet.2008.10.075

[4]   Li, L., Fan, M., Icton, C.D., Chen, N., Leavitt, B.R., Hayden, M.R., Murphy, T.H. and Raymond, L.A. (2003) Role of NR2B-type NMDA receptors in selective neu- rodegeneration in Huntington disease. Neurobiology of Aging, 24, 1113-1121. doi:10.1016/j.neurobiolaging.2003.04.003

[5]   Tsai, S.J., Liu, H.C., Liu, T.Y., Cheng, C.Y. and Hong, C.J. (2002) Association analysis for the genetic variants of the NMDA receptor subunit 2b and Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 13, 91-94. doi:10.1159/000048639

[6]   Arnold, P.D., Rosenberg, D.R., Mundo, E., Tharmalingam, S., Kennedy, J.L. and Richter, M.A. (2004) Association of a glutamate (NMDA) subunit receptor gene (GRIN2B) with obsessive-compulsive disorder: A preliminary study. Psychopharmacology, 174, 530-538. doi:10.1007/s00213-004-1847-1

[7]   Biermann, T., Reulbach, U., Lenz, B., Frieling, H., Muschler, M., Hillemacher, T., Kornhuber, J. and Bleich, S. (2009) N-methyl-D-aspartate 2b receptor subtype (NR2B) pro- moter methylation in patients during alcohol withdrawal. Journal of Neural Transmission, 116, 615-622. doi:10.1007/s00702-009-0212-2

[8]   Kim, J.H., Park, M., Yang, S.Y., Jeong, B.S., Yoo, H.J., Kim, J.W., Chung, J.H. and Kim, S.A. (2006) Associa- tion study of polymorphisms in N-methyl-D-aspartate re- ceptor 2B subunits (GRIN2B) gene with Korean alcoholism. Neuroscience Research, 56, 220-223. doi:10.1016/j.neures.2006.06.013

[9]   Ridge, J.P., Ho, A.M. and Dodd, P.R. (2009) Sex differences in NMDA receptor expression in human alcoholics. Alcohol and Alcoholism, 44, 594-601. doi:10.1093/alcalc/agp052

[10]   Ridge, J.P., Ho, A.M., Innes, D.J. and Dodd, P.R. (2008) The expression of NMDA receptor subunit mRNA in hu- man chronic alcoholics. Annals of the New York Academy of Sciences, 1139, 10-19. doi:10.1196/annals.1432.053

[11]   Tadic, A., Dahmen, N., Szegedi, A., Rujescu, D., Giegling, I., Koller, G., Anghelescu, I., Fehr, C., Klawe, C., Preuss, U.W., Sander, T., Toliat, M.R., Singer, P., Bondy, B. and Soyka, M. (2005) Polymorphisms in the NMDA subunit 2B are not associated with alcohol dependence and alco- hol withdrawal-induced seizures and delirium tremens. European Archives of Psychiatry and Clinical Neuroscience, 255, 129-135. doi:10.1007/s00406-004-0545-7

[12]   Wernicke, C., Samochowiec, J., Schmidt, L.G., Winterer, G., Smolka, M., Kucharska-Mazur, J., Horodnicki, J., Gallinat, J. and Rommelspacher, H. (2003) Polymorphisms in the N-methyl-D-aspartate receptor 1 and 2B subunits are associated with alcoholism-related traits. Biological Psychiatry, 54, 922-928. doi:10.1016/S0006-3223(03)00072-6

[13]   Koronyo-Hamaoui, M., Frisch, A., Stein, D., Denziger, Y., Leor, S., Michaelovsky, E., Laufer, N., Carel, C., Fennig, S., Mimouni, M., Ram, A., Zubery, E., Jeczmien, P., Apter, A., Weizman, A. and Gak, E. (2007) Dual contribution of NR2B subunit of NMDA receptor and SK3 Ca2+-activated K+ channel to genetic predisposition to anorexia nervosa. Journal of Psychiatric Research, 1, 160-167. doi:10.1016/j.jpsychires.2005.07.010

[14]   Moddel, G., Jacobson, B., Ying, Z., Janigro, D., Bingaman, W., Gonzalez-Martinez, J., Kellinghaus, C., Prayson, R.A. and Najm, I.M. (2005) The NMDA receptor NR2B subunit contributes to epileptogenesis in human cortical dyspla- sia. Brain Research, 1046, 10-23. doi:10.1016/j.brainres.2005.03.042

[15]   Najm, I.M., Ying, Z., Babb, T., Mohamed, A., Hadam, J., LaPresto, E., Wyllie, E., Kotagal, P., Bingaman, W., Foldvary, N., Morris, H. and Luders, H.O. (2000) Epileptogenicity correlated with increased N-methyl-D-as- partate receptor subunit NR2A/B in human focal cortical dysplasia. Epilepsia, 41, 971-976. doi:10.1111/j.1528-1157.2000.tb00281.x

[16]   Ying, Z., Babb, T.L., Comair, Y.G., Bingaman, W., Bushey, M. and Touhalisky, K. (1998) Induced expression of NMDAR2 proteins and differential expression of NMDAR1 splice variants in dysplastic neurons of human epileptic neocortex. Journal of Neuropathology and Experimental Neurology, 57, 47-62. doi:10.1097/00005072-199801000-00007

[17]   Kutsuwada, T., Sakimura, K., Manabe, T., Takayama, C., Katakura, N., Kushiya, E., Natsume, R., Watanabe, M., Inoue, Y., Yagi, T., Aizawa, S., Arakawa, M., Takahashi, T., Nakamura, Y., Mori, H. and Mishina, M. (1996) Im- pairment of suckling response, trigeminal neuronal pat- tern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron, 16, 333-344. doi:10.1016/S0896-6273(00)80051-3

[18]   Sakimura, K., Kutsuwada, T., Ito, I., Manabe, T., Takayama, C., Kushiya, E., Yagi, T., Aizawa, S., Inoue, Y., Sugiyama, H., et al. (1995) Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature, 373, 151-155. doi:10.1038/373151a0

[19]   Zhou, M. and Baudry, M. (2006) Developmental changes in NMDA neurotoxicity reflect developmental changes in subunit composition of NMDA receptors. Journal of Neuroscience, 26, 2956-2963. doi:10.1523/JNEUROSCI.4299-05.2006

[20]   Akashi, K., Kakizaki, T., Kamiya, H., Fukaya, M., Yama- saki, M., Abe, M., Natsume, R., Watanabe, M. and Sakimura, K. (2009) NMDA receptor GluN2B (GluR ep- silon 2/NR2B) subunit is crucial for channel function, postsynaptic macromolecular organization, and actin cytoskeleton at hippocampal CA3 synapses. Journal of Neuroscience, 29, 10869-10882. doi:10.1523/JNEUROSCI.5531-08.2009

[21]   Schito, A.M., Pizzuti, A., Di Maria, E., Schenone, A., Ratti, A., Defferrari, R., Bellone, E., Mancardi, G.L., Ajmar, F. and Mandich, P. (1997) mRNA distribution in adult human brain of GRIN2B, a N-methyl-D-aspartate (NMDA) receptor subunit. Neuroscience Letters, 239, 49-53. doi:10.1016/S0304-3940(97)00853-7

[22]   Spooren, W., Mombereau, C., Maco, M., Gill, R., Kemp, J.A., Ozmen, L., Nakanishi, S. and Higgins, G.A. (2004) Pharmacological and genetic evidence indicates that com- bined inhibition of NR2A and NR2B subunit containing NMDA receptors is required to disrupt prepulse inhibit- tion. Psychopharmacology, 175, 99-105. doi:10.1007/s00213-004-1785-y

[23]   Hokyo, A., Kanazawa, T., Uenishi, H., Tsutsumi, A., Kawashige, S., Kikuyama, H., Glatt, S.J., Koh, J., Nishimoto, Y., Matsumura, H., Motomura, N. and Yoneda, H. (2010) Habituation in prepulse inhibition is affected by a polymorphism on the NMDA receptor 2B subunit gene (GRIN2B). Psychiatric Genetics, 20, 191-198. doi:10.1097/YPG.0b013e32833a201d

[24]   Hong, C.J., Yu, Y.W., Lin, C.H., Cheng, C.Y. and Tsai, S.J. (2001) Association analysis for NMDA receptor subunit 2B (GRIN2B) genetic variants and psychopa- thology and clozapine response in schizophrenia. Psy- chiatric Genetics, 11, 219-222. doi:10.1097/00041444-200112000-00007

[25]   Stewart, C.V. and Plenz, D. (2006) Inverted-U profile of dopamine-NMDA-mediated spontaneous avalanche re- currence in superficial layers of rat prefrontal cortex. Journal of Neuroscience, 26, 8148-8159. doi:10.1523/JNEUROSCI.0723-06.2006

[26]   Ranaldi, R., French, E. and Roberts, D.C. (1996) Sys- temic pretreatment with MK-801 (dizocilpine) increases breaking points for self-administration of cocaine on a progressive-ratio schedule in rats. Psychopharmacology, 128, 83-88. doi:10.1007/s002130050113

[27]   Bar-Joseph, A., Berkovitch, Y., Adamchik, J. and Biegon, A. (1994) Neuroprotective activity of HU-211, a novel NMDA antagonist, in global ischemia in gerbils. Mo- lecular and Chemical Neuropathology, 23, 125-135. doi:10.1007/BF02815406

[28]   Mulert, C., Juckel, G., Brunnmeier, M., Karch, S., Leicht, G., Mergl, R., Moller, H.J., Hegerl, U. and Pogarell, O. (2007) Prediction of treatment response in major depress- sion: integration of concepts. Journal of Affective Disor- ders, 98, 215-225. doi:10.1016/j.jad.2006.07.021

[29]   Jelic, V. and Kowalski, J. (2009) Evidence-based evalua- tion of diagnostic accuracy of resting EEG in dementia and mild cognitive impairment. Clinical EEG and Neu- roscience, 40, 129-142.

[30]   Neuper, C., Grabner, R.H., Fink, A., and Neubauer, A.C. (2005) Long-term stability and consistency of EEG event- related (de-)synchronization across different cognitive tasks. Clinical Neurophysiology, 116, 1681-1694. doi:10.1016/j.clinph.2005.03.013

[31]   Hermens, D.F., Soei, E.X., Clarke, S.D., Kohn, M.R., Gordon, E. and Williams, L.M. (2005) Resting EEG theta activity predicts cognitive performance in attention- deficit hyperactivity disorder. Pediatric Neurology, 32, 248-256. doi:10.1016/j.pediatrneurol.2004.11.009

[32]   Hoptman, M.J. and Davidson, R.J. (1998) Baseline EEG asymmetries and performance on neuropsychological tasks. Neuropsychologia, 36, 1343-1353. doi:10.1016/S0028-3932(98)00023-2

[33]   Coben, L.A., Chi, D., Snyder, A.Z. and Storandt, M. (1990) Replication of a study of frequency analysis of the rest- ing awake EEG in mild probable Alzheimer’s disease. Electroencephalography and Clinical Neurophysiology, 75, 148-154. doi:10.1016/0013-4694(90)90168-J

[34]   Arning, L., Saft, C., Wieczorek, S., Andrich, J., Kraus, P.H. and Epplen, J.T. (2007) NR2A and NR2B receptor gene variations modify age at onset in Huntington disease in a sex-specific manner. Human Genetics, 122, 175-182. doi:10.1007/s00439-007-0393-4

[35]   Ness, V., Arning, L., Niesert, H.E., Stuettgen, M.C., Epplen, J.T. and Beste, C. (2011) Variations in the GRIN2B gene are associated with risky decision-making. Neuropharmacology, 61, 950-956. doi:10.1016/j.neuropharm.2011.06.023

[36]   Duffy, F.H., Lyer, G. and Surwillo, W.W. (1989) Clinical electroencephalography and topographical brain mapping. Springer-Verlag, New York. doi:10.1007/978-1-4613-8826-5

[37]   Tsai, S.J., Liu, H.C., Liu, T.Y., Cheng, C.Y. and Hong, C.J. (2002) Association analysis for genetic variants of the NMDA receptor 2b subunit (GRIN2B) and Parkin- son’s disease. Journal of Neural Transmission, 109, 483-488. doi:10.1007/s007020200039

[38]   Barber, T.A., Meyers, R.A. and McGettigan, B.F. (2010) Memantine improves memory for taste-avoidance learn- ing in day-old chicks exposed to isolation stress. Pharmacology, Biochemistry and Behavior, 95, 203-208. doi:10.1016/j.pbb.2010.01.006

[39]   Uslaner, J.M., Parmentier-Batteur, S., Flick, R.B., Surles, N.O., Lam, J.S., McNaughton, C.H., Jacobson, M.A. and Hutson, P.H. (2009) Dose-dependent effect of CDPPB, the mGluR5 positive allosteric modulator, on recognition memory is associated with GluR1 and CREB phos- phorylation in the prefrontal cortex and hippocampus. Neuropharmacology, 57, 531-538. doi:10.1016/j.neuropharm.2009.07.022

[40]   Xi, D., Zhang, W., Wang, H.X., Stradtman, G.G. and Gao, W.J. (2009) Dizocilpine (MK-801) induces distinct changes of N-methyl-D-aspartic acid receptor subunits in parval- bumin-containing interneurons in young adult rat prefron- tal cortex. International Journal of Neuropsychophar- macology, 12, 1395-1408. doi:10.1017/S146114570900042X

[41]   Wise, L.E. and Lichtman, A.H. (2007) The uncompeti- tive N-methyl-D-aspartate (NMDA) receptor antagonist memantine prolongs spatial memory in a rat delayed ra- dial-arm maze memory task. European Journal of Pharmacology, 575, 98-102. doi:10.1016/j.ejphar.2007.07.059

[42]   Matsuoka, N. and Aigner, T.G. (1996) D-cycloserine, a partial agonist at the glycine site coupled to N-methyl- D-aspartate receptors, improves visual recognition mem- ory in rhesus monkeys. Journal of Pharmacology and Experimental Therapeutics, 278, 891-897.

[43]   Mathis, C., de Barry, J., and Ungerer, A. (1991) Memory deficits induced by gamma-L-glutamyl-L-aspartate and D-2-amino-6-phosphonovalerate in a Y-maze avoidance task: relationship to NMDA receptor antagonism. Psy- chopharmacology, 105, 546-552. doi:10.1007/BF02244378

[44]   Lopes da Silva, F.H., Pijn, J.P., Velis, D. and Nijssen, P.C. (1997) Alpha rhythms: Noise, dynamics and models. International Journal of Psychophysiology, 26, 237-249. doi:10.1016/S0167-8760(97)00767-8

[45]   David, O. and Friston, K.J. (2003) A neural mass model for MEG/EEG: Coupling and neuronal dynamics. Neuroimage, 20, 1743-1755. doi:10.1016/j.neuroimage.2003.07.015

[46]   Felleman, D.J. and Van Essen, D.C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1-47. doi:10.1093/cercor/1.1.1-a

 
 
Top