OJGas  Vol.1 No.2 , November 2011
Role of constitutive nitric oxide synthase in regulation of Helicobacter pylori-induced gastric mucosal cyclooxygenase-2 ac-tivation through S-nitrosylation: mechanism of ghrelin action
ABSTRACT
Gastric mucosal inflammatory responses to H. pylori lipopolysaccharide (LPS), are characterized by the excessive NO and prostaglandin (PGE2) generation due to the disturbances in nitric oxide synthase (NOS) and cyclooxygenase (COX) systems. Here, we report that the LPS-induced enhancement in gastric mucosal inducible (i) iNOS) activity and up-regulation in PGE2 production was associated with the suppression in Akt kinase activity and the impairment in constitutive (c) cNOS activation. The stimulatory effect of the LPS on PGE2 production, furthermore, was susceptible to suppression by COX-2 inhibitor, NS-398, and iNOS inhibitor, 1400 W. Further, we show that the countering effect of peptide hormone, ghrelin, on the LPS-induced changes was reflected in up-regu- lation in Akt activity and the increase in cNOS activation through phosphorylation, and accompanied by the suppression in iNOS expression and the reduction in COX-2 activity associated with the loss in COX-2 protein S-nitrosylation. Moreover, the effect of ghre-lin on the LPS-induced COX-2 S-nitrosylation was subject to repression by Akt inhibition. Our findings demonstrate that induction in iNOS with H. pylori in- fection leads to COX-2 activation through S-nitro- sylation and up-regulation in PGE2 generation, and that ghrelin counters these untoward consequences of the LPS through Akt-mediated up-regulation in cNO- S activation required for the iNOS gene repression.

Cite this paper
nullSlomiany, B. and Slomiany, A. (2011) Role of constitutive nitric oxide synthase in regulation of Helicobacter pylori-induced gastric mucosal cyclooxygenase-2 ac-tivation through S-nitrosylation: mechanism of ghrelin action. Open Journal of Gastroenterology, 1, 13-22. doi: 10.4236/ojgas.2011.12003.
References
[1]   Stolte, M. and Edit, S. (1996) Helicobacter pylori and evolution of gastritis. Scandinavian Journal of Gastroen- terology, 3, 13-16. doi:10.3109/00365529609094508

[2]   Piotrowski, J., Piotrowski, E., Skrodzka,D., Slomiany, A. and Slomiany, B.L. (1997) Induction of acute gastritis and epithelial cell apoptosis by Helicobacter pylori lipo- polysaccharide. Scandinavian Journal of Gastroenter- ology, 32, 203-211. doi:10.3109/00365529709000195

[3]   de Boer, W.A. (2000) Helicobacter pylori infection: Focus on a “search-and-treat” strategy for ulcer disease. Scandi-navian Journal of Gastroenterology, 35, 4-9.

[4]   Fu, F., Ramanujan, K.S. and Wong, A., et al. (1999) In-creased expression and cellular localization of inducible nitric oxide synthase and cyclooxygenase-2 in Helico- bacter pylori gastritis. Gastroenterology, 116, 1319-1329. doi:10.1016/S0016-5085(99)70496-8

[5]   Slomiany, B.L., Piotrowski, J. and Slomiany, A. (1999) Gastric mucosal inflammatory responses to Helico-bac-ter pylori lipopolysaccharide: Down-regulation of nitric oxide synthase-2 and caspase-3 by sulglycotide. Bioche- mical and Biophysical Research Communications, 261, 15-20. doi:10.1006/bbrc.1999.1003

[6]   Gupta, R.A., Polk, D.B., Krishna, U., et al. (2001) Acti- vation of peroxisome proliferator-activated receptor sup- presses nuclear factor kB-mediated apoptosis induced by Helicobacter pylori in gastric epithelial cells. Journal of Biological Chemistry, 276, 31059-31066. doi:10.1074/jbc.M104141200

[7]   Slomiany, B.L. and Slomiany, A. (2003) Plate-let-acti- vating factor modulates gastric mucosal inflammatory responses to Helicobacter pylori lipopolysaccha-ride. Bi- ochemical and Biophysical Research Communications, 306, 261-266. doi:10.1016/S0006-291X(03)00944-6

[8]   Wallace, J.L. and Devchand, P.R. (2005) Emerging roles for cyclooxygenase-2 in gastrointestinal mucosal de- fense. British Journal of Pharmacology, 145, 275-282. doi:10.1038/sj.bjp.0706201

[9]   Gyires, K. (2005) Gastric mucosal protection: From prostaglandins to gene-therapy. Current Medicinal Che-mistry, 12, 203-215.

[10]   Reider, G., Hofmann, J.A., Hatz, R.A., Stolte, M. and Enders, G.A. (2003) Up-regulation of inducible nitric oxide synthase in Helicobacter pylori-associated gastritis may represent an increased risk factor to develop gastric carcinoma of the intestinal type. International Journal of Medical Microbiology, 293, 403-412. doi:10.1078/1438-4221-00280

[11]   Slomiany, B.L. and Slomiany, A. (2007) Interference by leptin with Helicobacter pylori lipopolysaccha ride-induced cytosolic phospholipase A2 activation in gastric mucosal cells. Journal of Physiology and Phar-macology, 58, 117-113.

[12]   Tsatsanis, C., Androulidaki, A., Venihaki, M. and Margi- oris, A.N. (2006) Signaling network regulating cyc- looxygenase-2. International Journal of Biochemistry and Cell Biology, 38, 1654-1661. doi:10.1016/j.biocel.2006.03.021

[13]   Mollace, V., Muscoli, C., Masini, E., Cuzzocrea, S. and Salvemini, D. (2005) Modulation of prostaglandin bio- synthesis by nitric oxide and nitric oxide donors. Phar-macological Reviews, 57, 217-252. doi:10.1124/pr.57.2.1

[14]   Cuzzocrea, S. and Salvemini, D. (2007) Molecular me- chanisms involved in the reciprocal regulation of cyc- looxygenase and nitric oxide synthase enzymes. Kidney International, 71, 290-297. doi:10.1038/sj.ki.5002058

[15]   Skill, N.J., Theodorakis, N.G., Wang, Y.N., Wu, J.M., Redmond, E.M. and Sitzmann, J.V. (2008) Role of cycl- ooxygenase isoforms in prostacyclin biosynthesis and murine prehepatic portal hypertension. American Journal of Physiology-Gastrointestinal and Liver Physiology, 295, G953-964. doi:10.1152/ajpgi.00013.2008

[16]   Korhonen, R., Lahti, A., Kankaanranta, H. and Moilanen, E. (2005) Nitric oxide production and signaling in infla- mmation. Current Drug Targets: Inflammation and Al-lergy, 4, 471-479. doi:10.2174/1568010054526359

[17]   Maa, M.C., Chang, M.Y., Chen, Y.T., et al. (2008) Re-quirement of inducible nitric-oxide synthase in lipopo- lysaccharide-mediated Src induction and macrophage migration. Journal of Biological Chemistry, 283, 31408- 31416. doi:10.1074/jbc.M801158200

[18]   Slomiany, B.L. and Slomiany, A. (2010) Ghrelin protec-tion against lipopolysaccharide-induced gastric mucosal cell apoptosis involves constitutive nitric oxide synthase- mediated caspase-3 S-nitrosylation. Mediators of In-flammation. doi:1155/2010/280464

[19]   Marnett, L.J., Wright, T.L., Crews, B.C., Tannenbaum, S.R. and Morrow, J.D. (2000) Regulation of prostag- ndin biosynthesis by nitric oxide is revealed by targeted deletion of inducible nitric-oxide synthase. Journal of Biological Chemistry, 275, 13427-13430. doi:10.1074/jbc.275.18.13427

[20]   Kim, S.F., Huri, D.A. and Snyder, S.H. (2005) Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science, 310, 1966-1970. doi:10.1126/science.1119407

[21]   Ye, Y., Martinez, J.D., Perez-Polo, R.J., Lin, Y., Uretsky, B.F. and Brinbaum, Y. (2008) The role of eNOS, iNOS, and NF-kB in upregulation and activation of cycloox-ygenase-2 and infarct size reduction by atorvastatin. American Journal of Physiology-Heart and Cir-culatory Physiology, 295, H343-351. doi:10.1152/ajpheart.01350.2007

[22]   Lamon, B.D., Upmacis, R.K., Deeb, R.S., Koyuncu, H. and Hajjar, D.P. (2010) Inducible nitric oxide synthase gene deletion exaggerate MAPK-mediated cyclooxy- genase-2 induction by inflammatory stimuli. American Journal of Physiology-Heart and Circulatory Physiology, 299, H613-623. doi:10.1152/ajpheart.00144.2010

[23]   Tian, J., Kim, S.F., Hester, L. and Snyder, S.H. (2008) S-nitrosylation/activation of COX-2 mediates NMDA neurotoxicity. Proceedings of the National Academy of Sciences of the USA, 105, 10537-10540. doi:10.1073/pnas.0804852105

[24]   Bell, R.M., Smith, C.C. and Yellon, D.M. (2002) Nitric oxide as a mediator of delayed pharmacological (A1 re-ceptor triggered) preconditioning; is eNOS masquerading as iNOS? Cardiovascular Research, 53, 405-413. doi:10.1016/S0008-6363(01)00472-2

[25]   Slomiany, B.L. and Slomiany, A. (2010) Role of consti-tutive nitric oxide synthase S-nitrosylation in Helicobacter pylori-induced gastric mucosal cell apoptosis: Effect of ghrelin. Inflammopharmacology, 18, 233-240. doi:10.1007/s10787-010-0051-7

[26]   Slomiany, B.L. and Slomiany, A. (2010) Helicobacter pylori induces disturbances in gastric mucosal Akt acti-vation through inducible nitric oxide synthase-dependent S-nitrosylation: Effect of ghrelin. ISRN Gastroenterology, doi:10.5402/2011/308727

[27]   Kojima, M., Hosoda, H., Date, Y., Nakazato, M. and Kangawa, K. (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 402, 656- 660. doi:10.1038/45230

[28]   Sibilia, V., Pagani, F., Rindi, G., et al. (2008) Centralghrelin gastroprotection involves nitric oxide/prostag- landin cross-talk. British Journal of Pharmacology, 154, 688-697. doi:10.1038/bjp.2008.120

[29]   Xu, X., Jhun, B.S., Ha, C.H. and Jin, Z.G. (2008) Mole-cular mechanisms of ghrelin-mediated endothelial ni- tricoxide synthase activation. Endocrinology, 149, 4183- 4192. doi:10.1210/en.2008-0255

[30]   Slomiany, B.L. and Slomiany, A. (2009) Involvement of constitutive nitric oxide synthase in ghrelin-induced cy- tosolic phospholipase A2 activation in gastric mucosal cell protection against ethanol cytotoxicity. Inflammoph- armacology, 17, 245-253. doi:10.1007/s10787-009-0013-0

[31]   Chen, Y.T., Tsai, S.H., Sheu, S.Y. and Tsai, L.H. (2010) Ghrelin improves LPS-induced gastrointestinal motility disturbances: Roles of NO and prostaglandin E2. Shock, 33, 205-212. doi:10.1097/SHK.0b013e3181ae841b

[32]   Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S. and Tannenbaum, S.R. (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Analytical Biochemistry, 126, 131-138. doi:10.1016/0003-2697(82)90118-X

[33]   Jaffrey, S.R., Erdjument-Bromage, H., Ferris, D., Tempst, P. and Snyder, S.H. (2001) Protein S-nitrosylation: A physiological signal for neuronal nitric acid. Nature Cell Biology, 3, 193-197. doi:10.1038/35055104

[34]   Forrester, M.T., Foster, M.W. and Stamler, J.S. (2007) Assessment and application of the biotin switch technique for examining protein S-nitrosylation under conditions of pharmacologically induced oxidative stress. Journal of Biological Chemistry, 282, 13977-13983. doi:10.1074/jbc.M609684200

[35]   Waseem, T., Duxbury, M., Ito, H., Ashley, S.W. and Ro-binson, M.K. (2008) Exogenous ghrelin modulates re-lease of proinflammatory and anti-inflammatory cyto- kines in LPS-stimulated macrophages through distinct signaling pathways. Surgery, 143, 334-342. doi:10.1016/j.surg.2007.09.039

[36]   Lodeiro, P., Theodoropoulou, M., Pardo, M., Casanueva, F.F. and Camina, J.P. (2009) c-Src regulates Akt signaling in response to ghrelin via barrestin signaling-independent and dependent mechanism. PLoS One, 4, E4686. doi:10.1371/journal.pone.0004686

[37]   Haynes, M.P., Li, L., D. Sinha, D., et al. (2003) Src ki-nase mediates phosphatidylinositol 3-kinase/Akt-depen- dent rapid endothelial nitric-oxide synthase activation by estrogen. Journal of Biological Chemistry, 278, 2118- 2123. doi:10.1074/jbc.M210828200

[38]   Slomiany, B.L. and Slomiany, A. (2011) Ghrelin sup- pression of Helicobacter pylori-induced S-nitrosyla- tion-dependent Akt inactivation exerts modulatory influ-ence on gastric mucin synthesis. Inflammopharmacology, 19, 98-97. doi:10.1007/s10787-011-0078-4

[39]   Park, S.K., Lin, H.L. and Murphy, S. (1997) Nitric oxide regulates nitric oxide synthase-2 gene expression by in-hibiting NF-kB binding to DNA. Biochemical Journal, 322, 609-613.

[40]   Reynaert, N.L., Ckless, K., Korn, S.H., et al., (2004) Nitric oxide represses inhibitory kB kinase through S-nitrosylation. Proceedings of the National Academy of Sciences of the USA, 101, 8945-8950. doi:10.1073/pnas.0400588101

[41]   Hess, D.T., Matsumoto, A., Kim, S.O., Marshall, H.E. and Stamler, J.S. (2005) Protein S-nitrosylation: Purview and parameters. Nature Reviews/Molecular Cell Biology, 6, 150-166. doi:10.1038/nrm1569

 
 
Top