AiM  Vol.8 No.6 , June 2018
E coli Accumulation behind an Obstacle
Abstract: This paper describes our findings regarding the accumulation of motile bacteria at the rear of a confined obstacle and the physical description of the mechanisms at play. We found that the modification of flow due to the presence of the obstacle produces vorticity that favor the diffusion of bacteria towards the downstream stagnation point. By testing different flow rates, we determined the range in which bacteria accumulate. More interestingly, we observe that hydrodynamic interaction between the bacteria and the top and bottom surface of the microfluidic chip maintain the bacteria in the region where the flow velocity is lower than their own velocity. In the case of non-motile bacteria, this effect is not observed because bacteria follow the streamlines as passive tracers do.
Cite this paper: Miño, G. , Baabour, M. , Chertcoff, R. , Gutkind, G. , Clément, E. , Auradou, H. and Ippolito, I. (2018) E coli Accumulation behind an Obstacle. Advances in Microbiology, 8, 451-464. doi: 10.4236/aim.2018.86030.

[1]   Haig, S.J., Collins, G., Davies, R.L., Dorea, C.C. and Quince, C. (2011) Biological Aspects of Slow sand Filtration: Past, Present and Future. Water Science & Technology Water Supply, 11, 468-472.

[2]   Rippy, M.A. (2015) Meeting the Criteria: Linking Biofilter Design to Fecal Indicator Bacteria Removal. WIREs Water, 2, 577-592.

[3]   Verma, S., Daverey, A. and Sharma, A. (2017) Slow Sand Filtration for Water and Wastewater Treatment—A Review. Environmental Technology Review, 6, 47-58.

[4]   Ginn, T.R., Wood, B.D., Nelson, K.E., Scheibe, T.D., Murphy, E.M. and Clement, T.P. (2002) Processes in Microbial Transport in the Natural Subsurface. Advances in Water Resources, 25, 1017-1042.

[5]   Stevik, T.K., Aa, K., Ausland, G. and Hanssen, J.F. (2004) Retention and Removal of Pathogenic Bacteria in Wastewater Percolating through Porous Media: A Review. Water Research, 38, 1355-1367.

[6]   Nelson, K.E., Massoudieh, A. and Ginn, T.R. (2007) E. coli Fate and Transport in the Happel Sphere-in-Cell Model. Advances in Water Resources, 30, 1492-1504.

[7]   Hill, J., Kalkanci, O., McMurry, J.L. and Koser, H. (2007) Hydrodynamic Surface Interactions Enable Escherichia coli to Seek Efficient Routes to Swim Upstream. Physical Review Letters, 98, Article ID: 068101.

[8]   Marcos, Fu, H.C., Powers, T.R. and Stocker, R. (2012) Bacterial Rheotaxis. Proceedings of the National Academy of Sciences of the United States of America, 109, 4780-4785.

[9]   Altshuler, E., Miño, G., Pérez-Penichet, C., del Río, L., Lindner, A., Rousselet, A. and Clément, E. (2013) Flow-Controlled Densification and Anomalous Dispersion of E. coli through a Constriction. Soft Matter, 9, 1864-1870.

[10]   Rusconi, R., Guasto, J.S. and Stocker, R. (2014) Bacterial Transport Suppressed by Fluid Shear. Nature Physics, 10, 212-217.

[11]   Figueroa-Morales, N., Miño, G.L., Rivera, A., Caballero, R., Clement, E., Altshuler, E. and Lindner, A. (2015) Living on the Edge: Transfer and Traffic of E. coli in a Confined Flow. Soft Matter, 11, 6284-6293.

[12]   Archer, C.T., Kim, J.F., Jeong, H., Park, J.H., Vickers, C.E., Lee, S.Y. and Nielsen, L.K. (2011) The Genome Sequence of E. coli W (ATCC 9637): Comparative Genome Analysis and an Improved Genome-Scale Reconstruction of E. coli. BMC Genomics, 12, 1-20.

[13]   Prüss, B.M. and Matsumura, P. (1997) Cell Cycle Regulation of Flagellar Genes. Journal of Bacteriology, 179, 5602-5604.

[14]   Minamino, T., Imae, Y., Oosawa, F., Kobayashi, Y. and Oosawa, K. (2003) Effect of Intracellular pH on Rotational Speed of Bacterial Flagellar Motors. Journal of Bacteriology, 185, 1190-1194.

[15]   Tinevez, J.-Y., Perry, N., Schindelin, J., Hoopes, G.M., Reynolds, G.D., Laplantine, E., Bednarek, S.Y., Shorte, S.L. and Eliceiri, K.W. (2017) TrackMate: An Open and Extensible Platform for Single-Particle Tracking. Methods, 115, 80-90.

[16]   Lauga, E., DiLuzio, W.R., Whitesides, G.M. and Stone, H.A. (2006) Swimming in Circles: Motion of Bacteria near Solid Boundaries. Biophysical Journal, 90, 400-412.

[17]   Li, G., Bensson, J., Nisimova, L., Munger, D., Mahautmr, P., Tang, J.X., Maxey, M.R. and Brun, Y.V. (2011) Accumulation of Swimming Bacteria near a Solid Surface. Physical Review E, 84, Article ID: 041932.

[18]   Guidobaldi, H.A., Jeyaram, Y., Condat, C.A., Oviedo, M., Berdakin, I., Moshchalkov, V.V., Giojalas, L.C., Silhanek, A.V. and Marconi, V.I. (2015) Disrupting the Wall Accumulation of Human Sperm Cells by Artificial Corrugation. Biomicrofluidics, 9, Article ID: 024122.

[19]   Leptos, K.C., Guasto, J.S., Gollub, J.P., Pesci, A.I. and Goldstein, R.E. (2009) Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms. Physical Review Letters, 103, Article ID: 198103.

[20]   Miño, G., Mallouk, T.E., Darnige, T., Hoyos, M., Dauchet, J., Dunstan, J., Soto, R., Wang, Y., Rousselet, A. and Clemént, E. (2011) Enhanced Diffusion Due to Active Swimmers at a Solid Surface. Physical Review Letters, 106, Article ID: 048102.

[21]   Jeffery, G.B. (1922) The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid. Proceedings of the Royal Society of London. Series A, 102, 161-179.

[22]   DiLuzio, W.R., Turner, L., Mayer, M., Garstecki, P., Weibel, D.B., Berg, H.C. and Whitesides, G.M. (2005) Escherichia Coli Swim on the Right-Hand Side. Nature, 435, 1271-1274.

[23]   Sartori, P., Chiarello, E., Jayaswal, G., Pierno, M., Mistura, G., Brun, P., Tiribocchi, A. and Orlandini, E. (2018) Wall Accumulation of Bacteria with Different Motility Patterns. Physical Review E, 97, Article ID: 022610.

[24]   Takagi, D., Palacci, J., Braunschweig, A.B., Shelley, M.J. and Zhang, J. (2014) Hydrodynamic Capture of Microswcimmers into Sphere-Bound Orbits. Soft Matter, 10, 1784-1789.

[25]   Sipos, O., Nagy, K., Di Leonardo, R. and Galajda, P. (2015) Hydrodynamic Trapping of Swimming Bacteria by Convex Walls. Physical Review Letters, 114, Article ID: 258104.