[1] Volkin, D.B. and Klibanov, A.M. (1989) Minimizing protein inactivation. In: Creighton T.E. Ed., Protein function: practical approach, IRL Press, Oxford, 1-24.
[2] Klibanov, A.M. (1983) Stabilization of enzymes against thermal inactivation. Advances in Applied Microbiology, 29, 1-28. doi:10.1016/S0065-2164(08)70352-6
[3] Gerlsma, S.Y. (1968) Reversible denaturation of ribonuclease in aqueous solutions as influenced by polyhydric alcohols and some other additives. Journal of Biological Chemistry, 243, 957-961.
[4] Kaushik, J. K. and Bhat, R. (1998) Thermal stability of proteins in aqueous polyol solutions: Role of the surface tension of water in the stabilizing effect of polyols. Journal of Physical Chemistry B, 102, 7058-7066. doi:10.1021/jp981119l
[5] Back, J.F., Oakenfull, D. and Smith, M.B. (1979) Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry, 18, 5191-5196. doi:10.1021/bi00590a025
[6] Lee, J.C. and Timasheff, S.N. (1981) The stabilization of proteins by sucrose. Journal of Biological Chemistry, 256, 7193-7201.
[7] Santoro, M.M., Liu, Y., Khan, S.M.A., Hou, L.-X. and Bolen, D.W. (1992) Increased thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemistry, 31, 5278-5283. doi:10.1021/bi00138a006
[8] Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D. and Somero, G.N. (1982) Living with water stress: Evolution of osmolyte systems. Science, 217, 1214-1222. doi:10.1126/science.7112124
[9] Arakawa, T., Bhat, R. and Timasheff, S.N. (1990) Why preferential hydration does not always stabilize the native structure of globular proteins. Biochemistry, 29, 1924- 1931. doi:10.1021/bi00459a037
[10] Ikegaya, K. (2005) Kinetic analysis about the effects of neutral salts on the thermal stability of yeast alcohol dehydrogenase. Journal of Biochemistry, 137, 349. doi:10.1093/jb/mvi037
[11] Cioci, F. and Lavecchia, R. (1998) Thermostabilization of proteins by water-miscible additives. Chemical and Biochemical Engineering Quarterly, 12, 191-199.
[12] Noritomi, H., Minamisawa, K., Kamiya, R. and Kato, S. (2011) Thermal stability of proteins in the presence of aprotic ionic liquids. Journal of Biomedical Science and Engineering, 4, 94-99. doi:10.4236/jbise.2011.42013
[13] Illanes, A. (1999) Stability of biocatalysts. Electronic Journal of Biotechnology, 2, 1-9.
[14] Elnashar, M.M.M. (2010) Review article: Immobilized molecules using biomaterials and nanobiotechnology. Journal of Biomaterials and Nanobiotechnology, 1, 61- 77. doi:10.4236/jbnb.2010.11008
[15] Wang, J., Liu, J. and Cepra, G. (1997) Thermal stabilization of enzymes immobilized within carbon paste electrodes. Analytical Chemistry, 69, 3124-3127. doi:10.1021/ac9702305
[16] Asuri, P., Karajanagi, S.S., Vertegel, A.A., Dordick, J.S. and Kane, R.S. (2007) Enhanced stability of enzymes adsorbed onto nanoparticles. Journal of Nanoscience and Nanotechnology, 7, 1675-1678. doi:10.1166/jnn.2007.453
[17] Chaplin, M.F. and Bucke, C. (1990) Enzyme technology. Cambridge University Press, Cambridge.
[18] Gonzalez, M.T., Molina-Sabio, M. and Rodrigues-Reinoso, F. (1994) Steam-activation of olive stone chars. Development of porosity. Carbon, 32, 1407-1413. doi:10.1016/0008-6223(94)90133-3
[19] Lussier, M.G., Shull, J.C. and Miller, D.J. (1994) Activated carbon from cherry stones. Carbon, 32, 1493-1498. doi:10.1016/0008-6223(94)90144-9
[20] Noszko, L.H., Bota, A., Simay, A. and Nagy, L.G. (1984) Preparation of activated carbon from the by- products of agricultural industry. Periodica Polytechnica, 28, 293- 297.
[21] Rivera-Utrilla, J., Ultera-Hidalgo, E., Ferro-Garcia, M.A. and Mereno-Castilla, C. (1991) Comparison of activated carbons prepared from agricultural raw materials and Spanish lignites when removing chlorophenols from aqueous solution. Carbon, 29, 613-619. doi:10.1016/0008-6223(91)90128-6
[22] Rodrigez-Reinoso, F. and Molina-Sabio, M. (1992) Activated carbons from lignocellulosic materials by chemical and/or physical activation: An overview. Carbon, 30, 1111-1118. doi:10.1016/0008-6223(92)90143-K
[23] Jollès, P. (1996) Lysozymes: Model enzymes in biochemistry and biology. Birkh?user Verlag, Basel.
[24] Ahern, T.J. and Klibanov, A.M. (1985) The mechanism of irreversible enzyme inactivation at 100?C. Science, 228, 1280-1284. doi:10.1126/science.4001942
[25] Nohara, D., Mizutani, A. and Sakai, T. (1999) Kinetic study on thermal denaturation of hen egg-white lysozyme involving precipitation. Journal of Bioscience and Bioengineering, 87, 199-205. doi:10.1016/S1389-1723(99)89013-6
[26] Lumry, R. and Eyring, H. (1954) Conformation changes of proteins. Journal of Physical Chemistry, 58, 110-120. doi:10.1021/j150512a005
[27] Zale, S.E. and Klibanov, A.M. (1983) On the role of reversible denaturation (unfolding) in the irreversible thermal inactivation of enzymes. Biotechnology and Bioengineering, 25, 2221-2230. doi:10.1002/bit.260250908
[28] Ibara-Molero, B. and Sanchez-Ruiz, J.M. (1997) Are there equilibrium intermediate states in the urea-induced unfolding of hen egg-white lysozyme? Biochemistry, 36, 9616-9624. doi:10.1021/bi9703305
[29] Griko, Y.V., Freire, E., Privalov, G., Dael, H.V. and Privalov, P.L. (1995) The unfolding thermodynamics of c-type lysozyme—A calorimetric study of the heat denaturation of equine lysozyme. Journal of Molecular Biology, 252, 447-459. doi:10.1006/jmbi.1995.0510
[30] Privalov, P.L. and Khechinashvili, N.N. (1974) A thermodynamic approach to the problem of stabilization of globular protein structure. Journal of Molecular Biology, 86, 665-684. doi:10.1016/0022-2836(74)90188-0
[31] Khechinashvili, N.N., Privalov, P.L. and Tiktopulo, E.I. (1973) Calorimetric investigation of lysozyme thermal denaturation. FEBS Letters, 30, 57-60. doi:10.1016/0014-5793(73)80618-0
[32] Anfinsen, C.B. (1973) Principles that govern the folding of protein chains. Science, 181, 223-230. doi:10.1126/science.181.4096.223