[1] Wang, J., Xu, Y., Li, L., Wang, L., Yao, R., Sun, Q. and Du, G. (2017) FOXC1 Is Associated with Estrogen Receptor Alpha and Affects Sensitivity of Tamoxifen Treatment in Breast Cancer. Cancer Medicine, 6, 275-287.
[2] Wan, G., Xiang, L., Sun, X., Wang, X., Li, H., Ge, W. and Cao, F. (2017) Elevated YKL-40 Expression Is Associated with a Poor Prognosis in Breast Cancer Patients. Oncotarget, 8, 5382-5391.
[3] Coates, A.S., Winer, E.P., Goldhirsch, A., Gelber, R.D., Gnant, M., Piccart-Gebhart, M., Thurlimann, B., et al. (2015) Tailoring Therapies—Improving the Management of Early Breast Cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Annals of Oncology, 26, 1533-1546.
https://doi.org/10.1093/annonc/mdv221
[4] Acloque, H., Adams, M.S., Fishwick, K., Bronner-Fraser, M. and Nieto, M.A. (2009) Epithelial-Mesenchymal Transitions: The Importance of Changing Cell State in Development and Disease. The Journal of Clinical Investigation, 119, 1438-1449.
https://doi.org/10.1172/JCI38019
[5] Han, B., Bhowmick, N., Qu, Y., Chung, S., Giuliano, A.E. and Cu, X. (2017) FOXC1: An Emerging Marker and Therapeutic Target for Cancer. Oncogene, 36, 3957-3963.
https://doi.org/10.1038/onc.2017.48
[6] Pietila, M., Vijay, G.V., Soundararajan, R., Yu, X., Symmans, W.F., Sphyris, N. and Mani, S.A. (2016) FOXC2 Regulates the G2/M Transition of Stem Cell-Rich Breast Cancer Cells and Sensitizes Them to PLK1 Inhibition. Scientific Reports, 6, Article No. 23070.
https://doi.org/10.1038/srep23070
[7] Rehli, M., Krause, S.W. and Andreesen, R. (1997) Molecular Characterization of the Gene for Human Cartilage gp-39 (CHI3L1), a Member of the Chitinase Protein Family and Marker for Late Stages of Macrophage Differentiation. Genomics, 43, 221-225.
https://doi.org/10.1006/geno.1997.4778
[8] Fusetti, F., Pijning, T., Kalk, K.H., Bos, E. and Dijkstra, B.W. (2003) Crystal Structure and Carbohydrate-Binding Properties of the Human Cartilage Glycoprotein-39. The Journal of Biological Chemistry, 278, 37753-37760.
https://doi.org/10.1074/jbc.M303137200
[9] Prakash, M., Bodas, M., Prakash, D., Nawani, N., Khetmalas, M., Mandal, A. and Eriksson, C. (2013) Diverse Pathological Implications of YKL-40: Answers May Lie in “Outside-In” Signaling. Cell Signal, 25, 1567-1573.
https://doi.org/10.1016/j.cellsig.2013.03.016
[10] Johansen, J.S., Schultz, N.A. and Jensen, B.V. (2009) Plasma YKL-40: A Potential New Cancer Biomarker? Future Oncology, 5, 1065-1082.
https://doi.org/10.2217/fon.09.66
[11] Liu, B., Han, S.M., Tang, X.Y., et al. (2014) Overexpressed FOXC2 in Ovarian Cancer Enhances the Epithelial-to-Mesenchymal Transition and Invasion of Ovarian Cancer Cells. Oncology Reports, 31, 2545-2554.
https://doi.org/10.3892/or.2014.3119
[12] Xu, Y., Shao, Q., Yao, H., Jin, Y., Ma, Y. and Jia, L. (2014) Department of Gastrointestinal Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, China Overexpression of FOXC1 Correlates with Poor Prognosis in Gastric Cancer Patients. Histopathology, 64, 963-970.
https://doi.org/10.1111/his.12347
[13] Hollier, B.G., Tinnirello, A.A., Werden, S.J., Evans, K.W., Taube, J.H., Sarkar, T.R., Sphyris, N., Shariati, M., Kumar, S.V., Battula, V.L., Herschkowitz, J.I., Guerra, R., Chang, J.T., Miura, N., Rosen, J.M. and Mani, S.A. (2012) FOXC2 Expression Links Epithelial-Mesenchymal Transition and Stem Cell Properties in Breast Cancer. Cancer Research, 73, 1981-1992.
https://doi.org/10.1158/0008-5472.CAN-12-2962
[14] Quan, Y., Zhe, Q., Zheng, C., Deng, W., Meng, F., Fu, Y., et al. (2014) Epithelial-Mesenchymal Transition-Associated miRNAs in Ovarian Carcinoma, with Highlight on the miR-200 Family: Prognostic Value and Prospective Role in Ovarian Cancer Therapeutics. Cancer Letters, 351, 173-181.
https://doi.org/10.1016/j.canlet.2014.05.022
[15] Cui, Y.-M., Jiao, H.-L., Ye, Y.-P., Chen, C.-M., Wang, J.-X., Tang, N., et al. (2015) FOXC2 Promotes Colorectal Cancer Metastasis by Directly Targeting MET. Oncogene, 34, 4379-4390.
[16] Watanabe, A., Suzuki, H., Yokobori, T., Altan, B., Kubo, N., Araki, K., et al. (2013) Forkhead Box Protein C2 Contributes to Invasion and Metastasis of Extrahepatic Cholangiocarcinoma, Resulting in a Poor Prognosis. Cancer Science, 104, 1427-1432.
[17] Nishida, N., Mimori, K., Yokobori, T., et al. (2011) FOXC2 Is a Novel Prognostic Factor in Human Esophageal Squamous Cell Carcinoma. Annals of Surgical Oncology, 18, 535-542.
https://doi.org/10.1245/s10434-010-1274-y
[18] Ivanov, K.I., et al. (2013) Phosphorylation Regulates FOXC2-Mediated Transcription in Lymphatic Endothelial Cells. Molecular and Cellular Biology, 33, 3749-3761.
https://doi.org/10.1128/MCB.01387-12
[19] Li, Q., et al. (2015) Overexpression of Forkhead Box C2 Promotes Tumour Metastasis and Indicates Poor Prognosis in Colon Cancer via Regulating Epithelial-Mesenchymal Transition. American Journal of Cancer Research, 5, 2022-2034.
[20] Zhou, Z., et al. (2015) FOXC2 Promotes Chemoresistance in Nasopharyngeal Carcinomas via Induction of Epithelial Mesenchymal Transition. Cancer Letters, 363, 137-145.
https://doi.org/10.1016/j.canlet.2015.04.008
[21] Imayama, N., et al. (2015) FOXC2 Expression Is Associated with Tumour Proliferation and Invasion Potential in Oral Tongue Squamous Cell Carcinoma. Pathology & Oncology Research, 21, 783-791.
https://doi.org/10.1007/s12253-014-9891-6
[22] Sano, H., Leboeuf, J.P., Novitskiy, S.V., et al. (2010) The Foxc2 Transcription Factor Regulates Tumor Angiogenesis. Biochemical and Biophysical Research Communications, 392, 201-206.
https://doi.org/10.1016/j.bbrc.2010.01.015
[23] Cui, Y.M., Jiang, D., Zhang, S.H., et al. (2014) FOXC2 Promotes Colorectal Cancer Proliferation through Inhibition of FOXO3a and Activation of MAPK and AKT Signaling Pathways. Cancer Letters, 353, 87-94.
https://doi.org/10.1016/j.canlet.2014.07.008
[24] Kim, S., Kasturi, D., Shahla, N., Frederick, C. and Meera, H. (2007) Prognostic Implications of Immunohistochemically Detected YKL-40 Expression in Breast Cancer. World Journal of Surgical Oncology, 5, 17.
https://doi.org/10.1186/1477-7819-5-17
[25] Shao, R., Cao, Q.J., Arenas, R.B., Bigelow, C., Bentley, B. and Yan, W. (2011) Breast Cancer Expression of YKL-40 Correlates with Tumour Grade, Poor Differentiation, and Other Cancer Markers. British Journal of Cancer, 105, 1203-1209.
https://doi.org/10.1038/bjc.2011.347
[26] Roslind, A., Knoop, A.S., Jensen, M.B., Johansen, J.S., Nielsen, D.L., Price, P.A. and Balslev, E. (2008) YKL-40 Protein Expression Is Not a Prognostic Marker in Patients with Primary Breast Cancer. Breast Cancer Research and Treatment, 112, 275-285.
https://doi.org/10.1007/s10549-007-9870-7
[27] Jefri, M., Huang, Y.-N., Huang, W.-C., Tai, C.-S. and Chen, W.-L. (2015) YKL-40 Regulated Epithelial-Mesenchymal Transition and Migration/Invasion Enhancement in Non-Small Cell Lung Cancer. BMC Cancer, 15, 590.
https://doi.org/10.1186/s12885-015-1592-3
[28] Hao, H., Wang, L., Chen, H., Xie, L., Bai, T., Liu, H. and Wang, D. (2017) YKL-40 Promotes the Migration and Invasion of Prostate Cancer Cells by Regulating Epithelial Mesenchymal Transition. American Journal of Translational Research, 9, 3749-3757.
http://www.ajtr.org
[29] Ozdemir, E., Cicek, T. and Kaya, M.O. (2012) Association of Serum YKL-40 Level with Tumor Burden and Metastatic Stage of Prostate Cancer. Urology Journal, 9, 568-573.
[30] Qin, G., Li, X., Chen, Z., Liao, G., Su, Y., Chen, Y. and Zhang, W. (2016) Prognostic Value of YKL-40 in Patients with Glioblastoma: A Systematic Review and Meta-Analysis. Molecular Neurobiology, 54, 3264-3270.
[31] Low, D., Subramaniam, R., Lin, L., Aomatsu, T., Mizoguchi, A., Ng, A., DeGruttola, A.K., et al. (2015) Chitinase 3-like 1 Induces Survival and Proliferation of Intestinal Epithelial Cells during Chronic Inflammation and Colitis-Associated Cancer by Regulating S100A9. Oncotarget, 6, 36535-36550.
https://doi.org/10.18632/oncotarget.5440
[32] Francescone, R.A., Scully, S., Faibish, M., Taylor, S.L., Oh, D., Moral, L., et al. (2011) Role of YKL-40 in the Angiogenesis, Radioresistance, and Progression of Glioblastoma. The Journal of Biological Chemistry, 286, 15332-15343.
https://doi.org/10.1074/jbc.M110.212514
[33] Libreros, S. and Iragavarapu-Charyulu, V. (2015) YKL-40/CHI3L1 Drives Inflammation on the Road of Tumor Progression. Journal of Leukocyte Biology, 98, 931-936.
https://doi.org/10.1189/jlb.3VMR0415-142R
[34] Kzhyshkowska, J., Yin, S., Liu, T., Riabov, V. and Mitrofanova, I. (2016) Role of Chitinase-Like Proteins in Cancer. Biological Chemistry, 397, 231-247.
https://doi.org/10.1515/hsz-2015-0269