JEP  Vol.9 No.6 , May 2018
Design and Comparison of Wastewater Treatment Plant Types (Activated Sludge and Membrane Bioreactor), Using GPS-X Simulation Program: Case Study of Tikrit WWTP (Middle Iraq)
Abstract: Mathematical models and simulation are considered a powerful tool in engineering practice. Those tools are becoming increasingly used for the improvement of wastewater treatment plants design because the conceptual design is complex and ill-defined. In this paper, three alternatives: 1) complete mix activated sludge without nitrogen removal (CAS); 2) complete mix activated sludge with nitrogen removal (CAS-N) and; 3) membrane bioreactor (MBR) processes were designed into two steps: first concept design to calculate the size of process units, then second implement modeling and simulation to improve the accuracy of the conceptual design. In brief, the treatment process design has been verified by using the activated sludge model No. 1 (ASM1) in GPS-X (v.7) simulation software. This application helps not only in sizing the treatment units but also in understanding the plant’s capacity. In the same time, it can assist in studying the future expansion works required for increased hydraulic and organic loadings. For this purpose, Tikrit WWTP was selected as a case study. The used model was validated by comparing the designed values of the plant and the modeling data. The verification of the obtained results from both hand calculations and the results of the program showed a good agreement. A significant difference in the volume of secondary treatment was obtained from design calculations, where the CAS without denitrification system was 9244 m3 (aerobic and secondary tanks), CAS with denitrification system was 11,324 m3 (anoxic, aerobic and secondary tanks) and for MBR system was 7468 m3 (anoxic, aerobic and immersed membrane tanks). From the obtained results point of view, it can be concluded that mathematical models can be considered as worthy tools to complement the established wastewater treatment plant design procedures.
Cite this paper: Arif, A. , Sorour, M. and Aly, S. (2018) Design and Comparison of Wastewater Treatment Plant Types (Activated Sludge and Membrane Bioreactor), Using GPS-X Simulation Program: Case Study of Tikrit WWTP (Middle Iraq). Journal of Environmental Protection, 9, 636-651. doi: 10.4236/jep.2018.96040.

[1]   Sixgh, G. and Dhir, A. (2012) Computer Aided Process Designing of Sewage Treatment Plant with Activated Sludge Process. Master Thesis, Dept. of Biotecirnology and Enironmenta1 Sciences, Thapar University, Punjab.

[2]   Gernaey, K.V., van Loosdrecht, M.C.M., Henze, M., Lind, M. and J?rgensen, S.B. (2004) Activated Sludge Wastewater Treatment Plant Modeling and Simulation: State of the Art. Environmental Modelling & Software, 19, 763-783.

[3]   Jeppsson, U. (1996) Modelling Aspects of Wastewater Treatment Processes. PhD Thesis, IEA, Lund Institute of Technology, Lund.

[4]   Henze, M., van Loosdrecht, M.C.M., Ekama, G. and Brdjanovic, D. (2008) Biological Wastewater Treatment Principles, Modelling and Design. IWA Publishing, Glasgow.

[5]   Evans, R.W. (2012) Implementing an Improved Activated Sludge Model into Modeling Software. MS Thesis, Environmental Systems Engineering, University of Regina.

[6]   Smith, C.W., Gregorio, D. and Taleott, R.M. (2009) The Use of Ultrafiltration Membrane for Activated Sludge Separation. 24th Annual Purdue Industrial Waste Conference, Purdue University, 6-9 May 1969, 1300-1310.

[7]   Yang, W., Cicek, N. and Ilg, J. (2006) State-of-the-Art of Membrane Bioreactors: Worldwide Research and Commercial Applications in North America. Journal of Membrane Science, 270, 201-211.

[8]   Directive of the Minister of Environment of Republic of Poland of 24 July 2006 on Conditions to Be Met When Discharging Effluent to Water or to Soil and on Substances Especially Harmful to Water Environment. Dz.U.06.137.984., Changed Dz.U.09.27.169., Warsaw, Poland.

[9]   Tchobanoglous, G., Burton, F.L. and Stensel, H.D. (2003) Wastewater Engineering: Treatment and Reuse. McGraw-Hill Publishing, New York.

[10]   Metcalf and Eddy (1991) Wastewater Engineering, Treatment, Disposal, Reuse. 3rd Edition, McGraw-Hill, Inc., New York.

[11]   ATV-DVWK (2000) ATV-DVWK Standards A 131E, Dimensioning of Single-Stage Activated Sludge Plants, ATV-DVWK, Water, Wastewater, Waste, Hennef, Germany.

[12]   Park, H.D., Chang, L.S. and Lee, K.J. (2015) Principles of Membrane Bioreactors for Wastewater Treatment. CRC Press, New York, U.S.

[13]   Copp, J.B., Johnson, B.R., Shaw, A., Burbano, M.S., Narayanan, B., Frank, K., Kinnear, D., Melcer, H. and Brischke, K. (2009) A Balancing Act: The Consulting Engineers’ Pragmatic View of Process Modelling. Water Science & Technology, 59, 763-769.

[14]   Henze, M., Gujer, W., Mino, T. and van Loosdrecht, M. (2000) Activated Sludge Models ASMI, ASM2. ASM2d and ASM3, IWA Publishing, London, England.

[15]   Mannina, G., Di Trapani, D., Viviani, G. and Odegaard, H. (2011) Modelling and Dynamic Simulation of Hybrid Moving Bed Biofilm Reactors: Model Concepts and Application to a Pilot Plant. Biochemical Engineering Journal, 56, 23-36.

[16]   Zuthi, M.F.R., Guo, W.S., Ngo, H.H., Nghiem, L.D. and Hai, F.I. (2013) Enhanced Biological Phosphorus Removal and Its Modelling for the Activated Sludge and Membrane Bioreactor Processes. Bioresource Technology, 139, 363-374.

[17]   Daigger, G.T. and Nolasco, D. (1995) Evaluation and Design of Full-Scale Wastewater Treatment Plants Using Biological Process Models. Water Science & Technology, 31, 245-255.

[18]   Hao, X., van Loosdrecht, M.C.M., Meijer, S.C.F. and Qian, Y. (2001) Model-Based Evaluation of Two BNR Processes-UCT and A2N. Water Research, 35, 1-2860.

[19]   Larrea, L., Albizuri, J., Irizar, I. and Hernandez, J.M. (2007) Design and Operation of SBR Processes for Small Plants Based on Simulations. Water Science & Technology, 55, 163-171.

[20]   Rivas, A., Irizar, I. and Ayesa, E. (2008) Model-Based Optimisation of Wastewater Treatment Plants Design. Environmental Modelling & Software, 23, 435-450.

[21]   Vanrolleghem, P.A., Jeppsson, U., Carstensen, J., Carlsson, B. and Olsson, G. (1996) Integration of Wastewater Treatment Plant Design and Operation—A Systematic Approach Using Cost Functions. Water Science & Technology, 34, 159-171.

[22]   ER-GE Design, Engineering, Consulting, Trade Ltd. Co. (2013) Preliminary Report Is Prepared to Design Tikrit Wastewater Treatment Plant in Tikrit, Iraq.

[23]   Takács, I., Patry, G.G. and Nolasco, D. (1991) A Dynamic Model of the Clarification-Thickening Process. Water Research, 25, 1263-1271.

[24]   Flores-Alsina, X. Corominas, L., Muschalla, D., Neumann, M.B. and Vanrolleghem, P.A. (2010) Verification of WWTP Design Guidelines with Activated Sludge Process Models. Proceedings: IWA World Water Congress and Exhibition, Montréal, 19-24 September 2010, 137-146.

[25]   Benedetti, L., De Keyser, W., Nopens, I. and Vanrolleghem, P.A. (2010) Probabilistic Modelling and Evaluation of Wastewater Treatment Plant Upgrades in a Water Quality Based Evaluation Context. Journal of Hydroinformatics, 12, 380-395.