GSC  Vol.1 No.4 , November 2011
An environmentally Benign Synthesis of 2-Cyanomethyl-4-Phenylthiazoles under FocusedMicrowave Irradiation
ABSTRACT
An improved environmentally benign procedure for synthesis of substituted 2-cyanomethyl-4-phenylthia- zoles under focused microwave irradiation using glycerol as solvent has been carried out. The method allows the synthesis of products in excellent yields with short reaction times and the work-up is easy. This approach can be applied to the preparation of a variety of derivatives.

Cite this paper
nullT. Deligeorgiev, S. Kaloyanova, N. Lesev, R. Alajarín, J. Vaquero and J. Álvarez-Builla, "An environmentally Benign Synthesis of 2-Cyanomethyl-4-Phenylthiazoles under FocusedMicrowave Irradiation," Green and Sustainable Chemistry, Vol. 1 No. 4, 2011, pp. 170-175. doi: 10.4236/gsc.2011.14026.
References
[1]   N. Seko, K. Yoshino, K. Yokota and G. Tsukamoto, “Synthesis and Platelet Aggregation Inhibitory Activity of Diphenylazole Derivatives I. Thiazole and Imidazole Derivatives,” Chemical & Pharmaceutical Bulletin, Vol. 39, No. 3, 1991, pp. 651-657.

[2]   C. S. Rooney, W. C. Randall, K. B. Streeter, C. Ziegler, E. J. Cragoe, H. Schwam, S. R. Michelson, H. W. R. Williams and E. Eichler, “Inhibitors of Glycolic Acid Oxidase. 4-Substituted 3-hydroxy-1H-pyrrole-2,5-dione Derivatives,” Journal of Medicinal Chemistry, Vol. 26, No. 5, 1983, pp. 700-714. doi:10.1021/jm00359a015

[3]   J. Crowforth, J. R. Atack, S. M. Cook, K. R. Gibson, A. Nadin, A. P. Owens, A. Pike, M. Rowley, A. J. Smith, B. Sohal, F. Sternfeld, K. Wafford and L. J. Street, “Tricyclic Pyridones as Functionally Selective Human GAB- AA Alpha 2/3 Receptor-Ion Channel Ligands,” Bioorganic & Medicinal Chemistry Letters, Vol. 14, No. 7, 2004, pp. 1679-1682. doi:10.1016/j.bmcl.2004.01.057

[4]   A. Nadin and T. Harrison, “Synthesis of Tricyclic Pyridones by Radical Cyclization,” Tetrahedron Letters, Vol. 40, No. 21, 1999, pp. 4073-4076. doi:10.1016/S0040-4039(99)00652-8

[5]   C. G. Caldwell, I. Kopka, M. L. Hammond and P. A. Zambias, “Substituted Thiazoles as Iimmunoregulants,” US Patent No. 4746669, 1988.

[6]   L. Elster, T. Hoegberg, A. Murray and J. M. Receveur, “Thiazole Derivatives as GPR 119 Modulators,” WO No. 2010001166, 2010.

[7]   I. Y. Choi, K. Lee, M. Chae, H. Kim, et all., “New Substituted 1,3-thiazole Derivatives or Pharmaceutically Acceptable Salts Thereof Having Immunosuppression and Inflammation Inhibitory Activity, Intermediate Compounds or Pharmaceutically Acceptable Salts thereof, a Process for the Preparation,” WO No. 2006137658, 2006.

[8]   E. V. Resnyanskaya, A. V. Tverdokhlebov, A. A. Tolmachev and Y. M. Volvenko, “Synthesis of 5-Amino-4- (4-aryl-2-thiazolyl)-2,3-dihydro-2-pyrrolones,” Russian Journal of Organic Chemistry, Vol. 41, No. 2, 2005, pp. 257-260. doi:10.1007/s11178-005-0153-7

[9]   M. H. Elnagdi, S. O. Abdallah, K. M. Ghoneim, E. M. Ebied and K.N. Kassab, “Synthesis of Some Coumarin Derivatives as Potential LaserDyes,” Journal of Chemical Research, Synopses, No. 2, 1997, pp. 44-45. doi:10.1039/a603731c

[10]   E. Hahn, G. Seybold and A. Stange, “Thiazolyl Cyano- coumarins and Their Use for the Areal Concentration of Light,” DE Patent No. 3609804, 1987.

[11]   C. Vamvakaris, M. Patsch and W. Mach, “Thiazole Containing Coumarin Compounds,” US Patent 440438, 1983.

[12]   Ia. B. Kuziv, V. V. Ishchenko, V. P. Khilya and I. Ya. Dubey, “Synthesis of Reagents Based on 7_Substituted 3_Thiazolylcoumarins for Covalent Labeling of Oligonucleotides,” Synthesis of Reagents Based on 7_Substituted 3_Thiazolylcoumarins for Covalent Labeling of Oligonucleotides,” Ukrainica Bioorganica Acta, Vol. 6, No. 3, 2008, pp. 3-12.

[13]   T. Deligeogiev, T. Tsvetkova, D. Ivanova and I. Timtcheva, “Synthesis and Electronic Spectra of 3-Hetaryl Substituted Coumarin Derivatives 7-Hydroxy-2H-chromen- 2-on and 9-hydroxy-2H-benzo(f)chromen-2-on”, Color Technology, Vol. 124, No. 4, 2008, pp. 195-203. doi:10.1111/j.1478-4408.2008.00141.x

[14]   A. Schwartz, Z. Pal, L. Szabo, K. Simon, I. Hermecz and Z. Meszaros, “Nitrogen Bridgehead Compounds, Part 68?. Studies on Quinolizine Derivatives. Part 2. Synthesis of 1,3-Disubstituted-4H-quinolizine Derivatives,” Journal of Heterocyclic Chemistry, Vol. 24, No. 3, 1987, pp. 645- 650. doi:10.1002/jhet.5570240320

[15]   G. H. Elgemeie and N. H. Metwally, “Synthesis of Structurally Related Purines: Benzimidazo[1,2-a]pyridines, Ben- zimidazo-[1,2-c]pyrimidines, and Pyrazolo-[1,5-a]pyrimi- dines,” Monatshefte für Chemie, Vol. 131, No. 7, 2000, p. 779. doi:10.1007/s007060050025

[16]   E. N. Ulomskii, S. L. Deev, V. L. Rusinov and O. N. Chupakhin, “Synthesis of Benzimidazolylazolo[5,1-c] [1,2,4]triazines,” Russian Journal of Organic Chemistry, Vol. 35, No. 9, 1999, pp. 1355-1362.

[17]   J. V. Metzger, “Comprehensive Heterocyclic Chemistry,” In: A. R. Katritzky and C. W. Rees, Eds., Pergamon, Oxford, 1984.

[18]   H. Singh, S. Singh and A. S. Cheema, “Intermediates in Hantzsch Synthesis and Synthesis of Symmetrical Thioethers,” Journal of the Indian Chemical Society, Vol. 53, No. 7, 1975, p. 682.

[19]   P. Knochel, “Modern Solvents in Organic Synthesis,” Springer, Heidelberg, 1999. doi:10.1007/3-540-48664-X

[20]   Y. Gu, J. Barrault and F. Jerrome, “Glycerol as an Efficient Promoting Medium for Organic Reactions,” Advanced Synthesis & Catalysis, Vol. 350, No. 13, 2008, pp. 2007-2012. doi:10.1002/adsc.200800328

[21]   A. Wolfson, G. Litvak, C. Dlugy, Y. Shotland and D. Tavor, “Employing Crude Glycerol from Biodiesel Production as an Alternative Green Reaction Medium,” Industrial Crops and Products, Vol. 30, No. 1, 2009, pp. 78-81. doi:10.1016/j.indcrop.2009.01.008

[22]   H. Sch?ffer and K. Gewald, “Zur Chemie des 4-Phenyl- thiazoly-(2)-acetonitrils,“ Journal für Praktische Chemie, Vol. 316, No. 4, 1974, pp. 684-692. doi:10.1002/prac.19743160421

[23]   E. Menta, G. Da Re and M. Grungi, “Derivatives of Chromen-2-one as Inhibitors of Vegf Production in Mammalian Cells,” US Patent No. 20060122387, 2006.

[24]   Imperial Chemical Industries, Neth. Appl. 6614130, 1968.

[25]   Y. M. Volovenko, E. V. Resnyanska and A. V. Tverdokhlebov, “A Facile Route to the 6-Hetaryl Substituted Pyrrolo[1,2-a]thieno[3,2-e]pyrimidine Derivatives,” Collection of Czechoslovak Chemical Communications, Vol. 67, No. 3, 2002, pp. 365-372. doi:10.1135/cccc20020365

[26]   T. Yakihara, S. Okuchi and M. Hatano, “2-(Thiazol-2-yl) cyanoacetic Acid Ester Derivative and Method for Producing the Same,” Kokai Tokkyo Koho, JP Patent No. 200- 2249486, 2002.

[27]   V. D. Dyachenko, T. A. Rilskaya and S. V. Savchuk, “Cross-Recyclization of 4-Aryl-2,6-diamino-3,5-dicyano- 4H-thiopyranes with Alkylations Reagents,” Kharkov University Bulletin, Vol. 731, No. 14, 2006, pp. 86-89.

[28]   P. Gаillard, J.-P. Gottenland, I. Jeanclaude-Etter, M. Sch- warz and R. J. Thomas, “Azole Methylident Cyanide De- riwatives and Their Use as Protein Kinase Modulators,” WO No. 2003106455, 2003.

[29]   Y. M. Volovenko, A. V. Tverdokhlebov, A. P. Gorulya, S. V. Shishkina, R. I. Zubatyuk and O. V. Shishkin, “A New and Convenient Synthesis of 1,2-Diamino-3-hetarylpyrrole Derivatives,” European Journal of Organic Chemistry, Vol. 2002, No. 4, 2002, pp. 663-668. doi:10.1002/1099-0690(200202)2002:4<663::AID-EJOC663>3.0.CO;2-A

[30]   A. W. Erian, S. M. Sherif and H. M. Gaber, “The Chemistry of α-Haloketones and Their Utility in Heterocyclic Synthesis,” Molecules, Vol. 8, No. 11, 2003, pp. 793-865. doi:10.3390/81100793

[31]   E. Menta, G. Da Re and M. Grungi, “Derivatives of Chromen-2-one as Inhibitors of VEGF Production in Mammalian Cells,” WO No. 2003105842, 2003.

[32]   K. Jain, J. Bariwal, M. Kathiravan, V. Raskar, G. Wankhede, N. Lonhe and S. Dighe, “An Efficient and Rapid Synthesis of 2-Amino-4-Arylthiazoles Employing Microwave Irradiation in Water,” Green and Sustainable Chemistry, Vol. 1, No. 2, 2011, pp. 36-40.

[33]   J. Chen, S. K. Spear, J. G. Huddleston and R. D. Rogers, “Polyethylene Glycol and Solutions of Polyethylene Glycol as Green Reaction Media,” Green Chemistry, Vol. 7, No. 2, 2005, pp. 64-82. doi:10.1039/b413546f

 
 
Top