Back
 JAMP  Vol.6 No.5 , May 2018
Acoustic Based Crosshole Full Waveform Slowness Inversion in the Time Domain
Abstract: We develop a new full waveform inversion (FWI) method for slowness with the crosshole data based on the acoustic wave equation in the time domain. The method combines the total variation (TV) regularization with the constrained optimization together which can inverse the slowness effectively. One advantage of slowness inversion is that there is no further approximation in the gradient derivation. Moreover, a new algorithm named the skip method for solving the constrained optimization problem is proposed. The TV regularization has good ability to inverse slowness at its discontinuities while the constrained optimization can keep the inversion converging in the right direction. Numerical computations both for noise free data and noisy data show the robustness and effectiveness of our method and good inversion results are yielded.
Cite this paper: Zhang, W. , Joardar, A. (2018) Acoustic Based Crosshole Full Waveform Slowness Inversion in the Time Domain. Journal of Applied Mathematics and Physics, 6, 1086-1110. doi: 10.4236/jamp.2018.65094.
References

[1]   Tarantola, A. (1984) Inversion of Seismic Reflection Data in the Acoustic Approximation. Geophysics, 49, 1259-1266.
https://doi.org/10.1190/1.1441754

[2]   Gauthier, O., Virieux, J. and Tarantola, A. (1986) Two-Dimensional Nonlinear Inversion of Seismic Waveforms: Numerical Results. Geophysics, 51, 1387-1403.
https://doi.org/10.1190/1.1442188

[3]   Tarantola, A. (1986) A Strategy for Nonlinear Inversion of Seismic Reflection Data. Geophysics, 51, 1893-1903.
https://doi.org/10.1190/1.1442046

[4]   Mora, P. (1987) Nonlinear Two-Dimensional Elastic Inversion of Multioffset Seismic Data. Geophysics, 52, 1211-1228.
https://doi.org/10.1190/1.1442384

[5]   Mora, P. (1988) Elastic Wavefield Inversion of Reflection and Transmission Data. Geophysics, 53, 750-759.
https://doi.org/10.1190/1.1442510

[6]   Pratt, R.G. (1990) Frequency-Domain Elastic Wave Modeling by Finite Differences: A Tool for Crosshole Seismic Imaging. Geophysics, 55, 626-632.
https://doi.org/10.1190/1.1442874

[7]   Pratt, R.G. and Worthington, M.H. (1990) Inverse Theory Applied to Multi-Source Cross-Hole Tomography, Part 1: Acoustic Wave Equation Method. Geophysical Prospecting, 38, 287-310.
https://doi.org/10.1111/j.1365-2478.1990.tb01846.x

[8]   Pratt, R.G. (1990) Inverse Theory Applied to Multi-Source Cross-Hole Tomography, Part 2: Elastic Wave Equation Method. Geophysical Prospecting, 38, 311-329.
https://doi.org/10.1111/j.1365-2478.1990.tb01847.x

[9]   Song, Z.M., Williamson, P.R. and Pratt, R.G. (1995) Frequency-Domain Acoustic-Wave Modeling and Inversion of Corsshole Data: Part II Inversion Method, Synthetic Experiments and Real-Data Results. Geophysics, 3, 796-809.
https://doi.org/10.1190/1.1443818

[10]   Bunks, C., Saleck, F., Zaleski, S. and Chavent, G. (1995) Multiscale Seismic Waveform Inversion. Geophysics, 60, 1457-1473.
https://doi.org/10.1190/1.1443880

[11]   Sirgue, L. and Pratt, R.G. (2004) Efficient Waveform Inversion and Imaging: A Strategy for Selecting Temporal Frequencies. Geophysics, 69, 231-248.
https://doi.org/10.1190/1.1649391

[12]   Zhang, W., Luo, J. and Teng, J. (2015) Frequency Multiscale Full-Waveform Velocity Inversion. Chinese Journal of Geophysics, 58, 216-228.

[13]   Signorini, M., Micheletti, S. and Perotto, S. (2016) CMFWI: Coupled Multiscenario Full Waveform Inversion. Inverse Problems in Science and Engineering, 25, 939-964.
https://doi.org/10.1080/17415977.2016.1209746

[14]   Guitton, A. (2012) Blocky Regularization Schemes for Full-Waveform Inversion. Geophysical Prospecting, 60, 870-884.

[15]   Shin, C. and Cha, Y.H. (2008) Waveform Inversion in the Laplace Domain. Geophysical Journal International, 173, 922-931.
https://doi.org/10.1111/j.1365-246X.2008.03768.x

[16]   Shin, C. and Cha, Y.H. (2009) Waveform Inversion in the Laplace-Fourier Domain. Geophysical Journal International, 177, 1067-1079.
https://doi.org/10.1111/j.1365-246X.2009.04102.x

[17]   Ha, T. and Shin, C. (2012) Laplace-Domain Full-Waveform Inversion of Seismic Data Lacking Low-Frequency Information. Geophysics, 77, R199-R206.
https://doi.org/10.1190/geo2011-0411.1

[18]   Wu, R.S., Luo, J. and Wu, B. (2014) Seismic Envelop Inversion and Modulation Signal Model. Geophysics, 79, WA13-WA24.
https://doi.org/10.1190/geo2013-0294.1

[19]   Virieux, J. and Operto, S. (2009) An Overview of Full-Waveform Inversion in Exploration Geophysics. Geophysics, 74, WCC127-WCC152.
https://doi.org/10.1190/1.3238367

[20]   Choi, Y. and Alkhalifah, T. (2018) Time-Domain Full-Waveform Inversion of Exponentially Damped Wavefield Using the Deconvolution-Based Objective Function. Geophysics, 83, R77-R88.
https://doi.org/10.1190/geo2017-0057.1

[21]   Manukyan, E., Maurer, H. and Nuber, A. (2018) Improvements to Elastic Full-Waveform Inversion Using Cross-Gradient Constraints. Geophysics, 83, R105-R115.
https://doi.org/10.1190/geo2017-0266.1

[22]   Capdeville, Y. and Metivier, L. (2018) Elastic Full Waveform Inversion Based on the Homogenization Method: Theoretical Framework and 2-D Numerical Illustrations. Geophysical Journal International, 213, 1093-1112.
https://doi.org/10.1093/gji/ggy039

[23]   Virieux, J. (1986) P-SV Wave Propagation in Heterogeneous Media: Velocity-Stress Finite-Difference Method. Geophysics, 51, 889-901.
https://doi.org/10.1190/1.1442147

[24]   Clayton, R. and Engquist, B. (1977) Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations. Bulletin of the Seismological Society of America, 67, 1529-1540.

[25]   Grote, M.J. and Keller, J.B. (2000) Exact Nonreflecting Boundary Condition for Elastic Waves. SIAM Journal on Applied Mathematics, 60, 803-819.
https://doi.org/10.1137/S0036139998344222

[26]   Zhang, W., Tong, L. and Chung, E.T. (2014) Exact Nonreflecting Boundary Conditions for Three Dimensional Poroelastic Wave Equations. Communications in Mathematical Sciences, 12, 61-98.
https://doi.org/10.4310/CMS.2014.v12.n1.a4

[27]   Berenger, J.P. (1994) A Perfectly Matched Layer for the Absorption of Electromangetic Waves. Journal of Computational Physics, 114, 185-200.
https://doi.org/10.1006/jcph.1994.1159

[28]   Collino, F. and Tsogka, C. (2001) Application of the Perfectly Matched Absorbing Layer Model to the Linear Elastodynamic Problem in Anisotropic Heterogeneous Media. Geophysics, 66, 294-307.
https://doi.org/10.1190/1.1444908

[29]   Komatitsch, D. and Tromp, J. (2003) A Perfectly Matched Layer Absorbing Boundary Condition for the Second-Order Seismic Wave Equation. Geophysical Journal International, 154, 146-153.
https://doi.org/10.1046/j.1365-246X.2003.01950.x

[30]   Royden, R.L. (1968) Real Analysis. 2nd Edition, MacMillan, New York.

[31]   Acar, R. and Vogel, C.R. (1994) Analysis of Total Variation Penalty Methods for Ill-Posed Problems. Inverse Problem, 10, 1217-1229.
https://doi.org/10.1088/0266-5611/10/6/003

[32]   Vogel, C.R. (2002) Computational Methods for Inverse Problems. SIAM, Philadelphia.

[33]   Engl, H.W., Hanke, M. and Neubauer, A. (2000) Regularization of Inverse Problems. Kluwer Academic Publishers, Dordrecht/Boston/London.

[34]   Barzilai, J. and Borwein, J. (1988) Two-Point Step Size Gradient Method. IMA Journal of Numerical Analysis, 8, 141-148.
https://doi.org/10.1093/imanum/8.1.141

[35]   Raydan, M. (1997) The Barzilai and Borwein Gradient Method for the Large Scale Unconstrained Minimization Problem. SIAM Journal on Optimization, 7, 26-33.
https://doi.org/10.1137/S1052623494266365

[36]   Qi, L., Teo, K. and Yang, X. (2005) Optimization and Control with Applications. Springer Science and Business Media, Inc., New York.
https://doi.org/10.1007/b104943

[37]   Nocedal, J. and Wright, S. (1999) Numerical Optimization. Springer Science and Business Media, Inc., New York.
https://doi.org/10.1007/b98874

 
 
Top