Back
 JWARP  Vol.10 No.5 , May 2018
Conversion of Potato Peel Waste to Single Cell Protein by an Acidophilic Fungus
Abstract: The aim of this research was to convert potato peel waste (PPW) to single cell protein (SCP), and to extract valuable phenolic compounds from the spent medium. PPW is an abundant by-product of potato processing industry, consisting mostly of starch, fibre and protein in a form of watery sludge. The PPW from a chip manufacturing plant was pre-treated with sulphuric acid, and used as a substrate for an acidophilic Scytalidium acidophilum fungus under non-aseptic conditions. The produced SCP had a promising amino acid composition to be used in animal feed. Phenolic compounds were not recovered from the spent medium, most likely due to the low pH in the medium. The present findings suggest that PPW is a suitable raw material for acidophilic SCP production, whilst the extraction of phenolic acids would require milder cultivation conditions or separation before pre-treatments of SCP production. The BOD5 of the PPW was reduced by in 98% due to fungal cultivation. Thus the feed production also served as an efficient means for reduction of organic load in the PPW.
Cite this paper: Taskila, S. , Ahokas, M. , Sotaniemi, V. , Mäki, M. , Malinen, H. , Jaakkola, M. , Virpiranta, H. and Tanskanen, J. (2018) Conversion of Potato Peel Waste to Single Cell Protein by an Acidophilic Fungus. Journal of Water Resource and Protection, 10, 522-532. doi: 10.4236/jwarp.2018.105028.
References

[1]   Helsky, T., Anttalainen, M., Palviainen, S., Kemppainen, P., Lehto, M., Salo, T., et al. (2006) Best Available Technique (BAT) for the Automated Peeling and Processing of Potato and Other Root Vegetables. Edita Prima Oy, Helsinki.

[2]   Bodner, J.M. and Sieg, J. (2009) Fiber. In: Ingredients in Meat Products, Springer, New York, 83-109.
https://doi.org/10.1007/978-0-387-71327-4_4

[3]   Camire, M.E., Violette, D., Dougherty, M.P. and McLaughlin, M.A. (1997) Potato Peel Dietary Fiber Composition: Effects of Peeling and Extrusion Cooking Processes. Journal of Agricultural and Food Chemistry, 45, 1404-1408.
https://doi.org/10.1021/jf9604293

[4]   Perez, S., Baldwin, P.M. and Gallant, D.J. (2009) Structural Features of Starch Granules I. Starch: Chemistry and Technology, 3, 11-21.

[5]   Rommi, K., Rahikainen, J., Vartiainen, J., Holopainen, U., Lahtinen, P., Honkap??, K., et al. (2016) Potato Peeling Costreams as Raw Materials for Biopolymer Film Preparation. Journal of Applied Polymer Science, 133, No. 5.
https://doi.org/10.1002/app.42862

[6]   Meyer, A.S., Dam, B.P. and Laerke, H.N. (2009) Enzymatic Solubilization of a Pectinaceous Dietary Fiber Fraction from Potato Pulp: Optimization of the Fiber Extraction Process. Biochemical Engineering Journal, 43, 106-112.
https://doi.org/10.1016/j.bej.2008.09.006

[7]   Arapoglou, D., Varzakas, T., Vlyssides, A. and Israilides, C. (2010) Ethanol Production from Potato Peel Waste (PPW). Waste Management, 30, 1898-1902.
https://doi.org/10.1016/j.wasman.2010.04.017

[8]   Liang, S., McDonald, A.G. and Coats, E.R. (2014) Lactic Acid Production with Undefined Mixed Culture Fermentation of Potato Peel Waste. Waste Management, 34, 2022-2027.
https://doi.org/10.1016/j.wasman.2014.07.009

[9]   Bacha, U., Nasir, M., Khalique, A., Anjum, A.A. and Jabbar, M.A. (2011) Comparative Assessment of Various Agro-Industrial Wastes for Saccharomyces cerevisiae Biomass Production and Its Quality Evaluation as Single Cell Protein. Journal of Animal and Plant Sciences, 21, 844-849.

[10]   Tomlinson, E.J. (1976) The Production of Single-Cell Protein from Strong Organic Waste Waters from the Food and Drink Processing Industries. Laboratory Cultures. Water Research, 10, 367-371.
https://doi.org/10.1016/0043-1354(76)90053-1

[11]   Tomlinson, E.J. (1976) The Production of Single-Cell Protein from Strong Organic Waste Waters from the Food and Drink Processing Industries. The Practical and Economic Feasibility of a Non-Aseptic Batch Culture. Water Research, 10, 372-376.
https://doi.org/10.1016/0043-1354(76)90054-3

[12]   Stevens, C.A. and Gregory, K.F. (1987) Production of Microbial Biomass Protein from Potato Processing Wastes by Cephalosporium eichhorniae. Applied and Environmental Microbiology, 53, 284-291.

[13]   Ivarson, K.C. and Morita, H. (1982) Single-Cell Protein-Production by the Acid-Tolerant Fungus Scytalidium acidophilum from Acid Hydrolysates of Waste Paper. Applied and Environmental Microbiology, 43, 643-647.

[14]   Sigler, L. and Carmichael, J.W. (1974) A New Acidophilic Scytalidium. Canadian Journal of Microbiology, 20, 267-268.
https://doi.org/10.1139/m74-043

[15]   Starkey, R.L. and Waksman, S.A. (1943) Fungi Tolerant to Extreme Acidity and High Concentrations of Copper Sulfate. Journal of Bacteriology, 45, 509-519.

[16]   Martin, A.M. and White, M.D. (1985) Growth of the Acid-Tolerant Fungus Scytalidium acidophilum as a Potential Source of Single-Cell Protein. Journal of Food Science, 50, 197-200.
https://doi.org/10.1111/j.1365-2621.1985.tb13308.x

[17]   Martin, A.M., Chintalapati, S.P. and Hoover, R. (1990) Assessment of Acid Hydrolysates of Peat as Substrate for Scytalidium acidophilum ATCC-26774 Fungus. Journal of Chemical Technology and Biotechnology, 49, 3-13.
https://doi.org/10.1002/jctb.280490103

[18]   Martin, A.M. (1999) A Low-Energy Process for the Conversion of Fisheries Waste Biomass. Renewable Energy, 16, 1102-1105.
https://doi.org/10.1016/S0960-1481(98)00428-5

[19]   Martin, A.M. and Chintalapati, S.P. (1989) Fish Offal-Peat Compost Extracts as Fermentation Substrate. Biological Wastes, 27, 281-288.
https://doi.org/10.1016/0269-7483(89)90009-8

[20]   Anupama and Ravindra, P. (2000) Value-Added Food: Single Cell Protein. Biotechnology Advances, 18, 459-479.
https://doi.org/10.1016/S0734-9750(00)00045-8

[21]   Akyol, H., Riciputi, Y., Capanoglu, E., Caboni, M.F. and Verardo, V. (2016) Phenolic Compounds in the Potato and Its Byproducts: An Overview. International Journal of Molecular Sciences, 17, 835.
https://doi.org/10.3390/ijms17060835

[22]   Albin, D.M., Wubben, J.E. and Gabert, V.M. (2000) Effect of Hydrolysis Time on the Determination of Amino Acids in Samples of Soybean Products with Ion-Exchange Chromatography or Precolumn Derivatization with Phenyl Isothiocyanate. Journal of Agricultural and Food Chemistry, 48, 1684-1691.
https://doi.org/10.1021/jf990599q

[23]   Spilioti, E., Jaakkola, M., Tolonen, T., Lipponen, M., Virtanen, V., Chinou, I., et al. (2014) Phenolic Acid Composition, Antiatherogenic and Anticancer Potential of Honeys Derived from Various Regions in Greece. PLoS ONE, 9, e94860.
https://doi.org/10.1371/journal.pone.0094860

[24]   Tsiapara, A.V., Jaakkola, M., Chinou, I., Graikou, K., Tolonen, T., Virtanen, V., et al. (2009) Bioactivity of Greek Honey Extracts on Breast Cancer (MCF-7), Prostate Cancer (PC-3) and Endometrial Cancer (Ishikawa) Cells: Profile Analysis of Extracts. Food Chemistry, 116, 702-708.
https://doi.org/10.1016/j.foodchem.2009.03.024

[25]   Eriksson, L., Johansson, E., Kettaneh-Wold, N., Wikstr?m, C. and Wold, S. (2008) Design of Experiments: Principles and Applications. 3rd Edition, Umetrics Academy, Stockholm.

[26]   Koza, C.R., Norton, G.A. and van Leeuwen, J. (2017) Dewatering Investigations on Fungal Biomass Grown in Thin Stillage from a Dry-Mill Corn Ethanol Plant. Biomass and Bioenergy, 97, 65-69.
https://doi.org/10.1016/j.biombioe.2016.12.011

[27]   Mishra, B.K., Arora, A. and Lata, N. (2004) Optimization of a Biological Process for Treating Potato Chips Industry Wastewater Using a Mixed Culture of Aspergillus foetidus and Aspergillus niger. Bioresource Technology, 94, 9-12.
https://doi.org/10.1016/j.biortech.2003.11.020

[28]   Huang, L.P., Jin, B., Lant, P. and Zhou, J. (2003) Biotechnological Production of Lactic Acid Integrated with Potato Wastewater Treatment by Rhizopus arrhizus. Journal of Chemical Technology and Biotechnology, 78, 899-906.
https://doi.org/10.1002/jctb.877

[29]   Dao, L. and Friedman, M. (1992) Chlorogenic Acid Content of Fresh and Processed Potatoes Determined by Ultraviolet Spectrophotometry. Journal of Agricultural and Food Chemistry, 40, 2152-2156.
https://doi.org/10.1021/jf00023a022

 
 
Top