Back
 GEP  Vol.6 No.5 , May 2018
A Case Study of a Regional Torrential Rain in North China Caused by Typhoon Damrey (2012)
Abstract: By using the NCEP/GFS analysis data, CIMISS data, JMA and China’s Typhoon Networks, heavy rainstorm occurred in east of North China associated with Typhoon Damrey from August 3rd to 4th, 2012 was analyzed. Results show during Damrey was going nearby Tianjin City and Hebei province of China, heavy rainstorm was observed in the cities of Qinhuangdao and Tangshan. The southerly jet stream from the southern side of the subtropical high and the periphery of Typhoon Saola is the conveyor belt for water vapor and energy, which enables Damrey to maintain for a long time and provide water vapor and heat conditions for rainfall in east of North China. The structure of Damrey caused a strong updraft in east of North China with a K-index greater than 35°C, which provided a favorable condition for the heavy rainstorm. The typhoon rainstorms in North China are the result of the interaction of the westerly, subtropical and tropical systems. In this heavy rain period, there was an obvious interaction between subtropical and tropical systems. This study has investigated the interaction between the northwestern Pacific typhoon and the North China heavy rainstorm, including the circulation characteristics of the typhoon and North China before and after the regional heavy rainstorm. Additionally, the climate background provides a reliable basis for the heavy rain forecast.
Cite this paper: Xing, R. , Zhu, Y. and Feng, C. (2018) A Case Study of a Regional Torrential Rain in North China Caused by Typhoon Damrey (2012). Journal of Geoscience and Environment Protection, 6, 220-227. doi: 10.4236/gep.2018.65018.
References

[1]   Wang, Y. (2017) Emergency Response Principles of Typhoon Disaster. Open Journal of Social Sciences, 5, 100-104.
https://doi.org/10.4236/jss.2017.51008

[2]   Guo, R. and Weng, Y. (2017) Analysis of the Positive Effect from the Typhoon Saomai to the Hydrothermal Environment of Shanghai. Journal of Geoscience and Environment Protection, 5, 221-234.
https://doi.org/10.4236/gep.2017.58018

[3]   Yu, S. and Subrahmanyam, M. (2017) Typhoon-Induced SST Cooling and Rainfall Variations: The Case of Typhoon CHAN-HOM and Nangka. Open Access Library Journal, 4, 1-12.

[4]   Peng, S.Q., Zhao, Q.H., Chen, M.D., et al. (2006) Mechanism of Geological Hazard of a Highway Slope in Zhejiang Province. Research of Soil & Water Conservation, 13, 124-102.

[5]   Ding, D. and Li, Y. (2011) A Study on Typhoon-Induced Rainfalls over Beijing: Statistics and Case Analysis. Journal of Meteorological Research, 25, 742-753.
https://doi.org/10.1007/s13351-011-0605-7

[6]   Ren, Z. (1997) Check of the Forecast of a Rare Rainstorm in South Area of Hebei Province in 1996. Meteorological Monthly, 23, 21-26.

[7]   Guo, D.F., Zheng, J. and Ai-Hua, X.U. (2006) Diagnosis Analysis of Structure and Rainstorm of the Typhoon “Bilis” in Jiangxi. Meteorology & Disaster Reduction Research, 29, 52-59.

[8]   Mojgan, G., Mehdi, M. and Reza, B. (2017) The Trend of Changes in Surface Wind in the Indian Ocean, in the Period from 1981 to 2015, Using Reanalysis Data, NCEP/NCAR. Open Journal of Marine Science, 7, 445-457.
https://doi.org/10.4236/ojms.2017.74031

[9]   Pattanaik, D.R., Mukhopadhyay, B. and Kumar, A. (2012) Monthly Forecast of Indian Southwest Monsoon Rainfall Based on NCEP’s Coupled Forecast System. Atmospheric and Climate Sciences, 2, 479-491.
https://doi.org/10.4236/acs.2012.24042

[10]   Zhang, X., Zhang, L., Fu, J. and Zhang, L. (2017) Analysis of Characteristics of the Forecast Jump in the NCEP Ensemble Forecast Products. Atmospheric and Climate Sciences, 7, 151-159.
https://doi.org/10.4236/acs.2017.71011

[11]   Xiong, X., Deng, W., Hu, J., et al. (2017) Design and Implementation of Real-Time Monitoring and Warning System for Regional Disastrous Weather Based on CIMISS. Meteorological Science & Technology, 45, 453-459.

[12]   Berman, F., Casanova, H., Chien, A., et al. (2005) New Grid Scheduling and Rescheduling Methods in the GrADS Project. International Journal of Parallel Programming, 33, 209-229.
https://doi.org/10.1007/s10766-005-3584-4

[13]   https://en.wikipedia.org/wiki/Typhoon_Damrey_(2012)

[14]   Duan, B., Zhang, W., Liu, H., et al. (2017) The Spatial and Temporal Distributions of Warm Sector Rainfall and Frontal Rainfall for the Torrential Rain Event in Beijing on 21 July 2012. Torrential Rain & Disasters, 36, 108-117.

[15]   https://en.wikipedia.org/wiki/K-index_(meteorology)

 
 
Top