Back
 AiM  Vol.8 No.5 , May 2018
Fermentative Bioethanol Production Using Enzymatically Hydrolysed Saccharina latissima
Abstract: The increased demand for machinery and transport has led to an overwhelming increase in the use of fossil fuels in the last century. Concerning the economic and environmental concern, macroalgae with high fermentable polysaccharide content (mainly mannitol, cellulose and laminarin), can serve as an excellent alternative to food crops for bioethanol production, a renewable liquid fuel. In this study, Saccharina latissima, a brown macroalgae readily available on the Norwegian coast was used as the carbohydrate source for the fermentative production of bioethanol. The macroalgae harvested was found to contain 31.31 ± 1.73 g of reducing sugars per 100 g of dry Saccharina latissima upon enzymatic hydrolysis. The subsequent fermentation with Saccharomyces cerevisiae produced an ethanol yield of 0.42 g of ethanol per g of reducing sugar, resulting in a fermentation efficiency of 84% as compared to the theoretical maximum. Using these results, an evaluation of the fermentation process has demonstrated that the brown macroalgae Saccharina latissima could become a viable bioethanol source in the future.
Cite this paper: Lamb, J. , Sarker, S. , Hjelme, D. and Lien, K. (2018) Fermentative Bioethanol Production Using Enzymatically Hydrolysed Saccharina latissima. Advances in Microbiology, 8, 378-389. doi: 10.4236/aim.2018.85025.
References

[1]   Ashokkumar, V., Salim, M.R., Salam, Z., Sivakumar, P., Chong, C.T., Elumalai, S., et al. (2017) Production of Liquid Biofuels (Biodiesel and Bioethanol) from Brown Marine Macroalgae Padina tetrastromatica. Energy Conversion and Management, 135, 351-361.
https://doi.org/10.1016/j.enconman.2016.12.054

[2]   Xu, J. and Li, M. (2017) Innovative Technological Paradigm-Based Approach towards Biofuel Feedstock. Energy Conversion and Management, 141, 48-62.
https://doi.org/10.1016/j.enconman.2016.04.075

[3]   Chen, H., Zhou, D., Luo, G., Zhang, S. and Chen, J. (2015) Macroalgae for Biofuels Production: Progress and Perspectives. Renewable and Sustainable Energy Reviews, 47, 427-437.
https://doi.org/10.1016/j.rser.2015.03.086

[4]   Su, Y., Zhang, P. and Su, Y. (2015) An Overview of Biofuels Policies and Industrialization in the Major Biofuel Producing Countries. Renewable and Sustainable Energy Reviews, 50, 991-1003.
https://doi.org/10.1016/j.rser.2015.04.032

[5]   Marchetti, J.M., Miguel, V.U. and Errazu, A.F. (2007) Possible Methods for Biodiesel Production. Renewable and Sustainable Energy Reviews, 11, 1300-1311.
https://doi.org/10.1016/j.rser.2005.08.006

[6]   Noraini, M.Y., Ong, H.C., Badrul, M.J. and Chong, W.T. (2014) A Review on Potential Enzymatic Reaction for Biofuel Production from Algae. Renewable and Sustainable Energy Reviews, 39, 24-34.
https://doi.org/10.1016/j.rser.2014.07.089

[7]   Rawat, I., Kumar, R.R., Mutanda, T. and Bux, F. (2013) Biodiesel from Microalgae: A Critical Evaluation from Laboratory to Large Scale Production. Applied Energy, 103, 444-467.
https://doi.org/10.1016/j.apenergy.2012.10.004

[8]   Handå, A., Forbord, S., Broch, O.J., Richardsen, R., Skjermo, J. and Reitan, K.I. (2009) Dyrking og anvendelse av tare, med spesiell fokus på bioenergi i nordområdene. Sintef report SFH80 A, 2009. 92036.

[9]   Adams, J.M., Gallagher, J.A. and Donnison, I.S. (2009) Fermentation Study on Saccharina latissima for Bioethanol Production Considering Variable Pre-Treatments. Journal of Applied Phycology, 21, 569.
https://doi.org/10.1007/s10811-008-9384-7

[10]   Singh, A. and Olsen, S.I. (2011) A Critical Review of Biochemical Conversion, Sustainability and Life Cycle Assessment of Algal Biofuels. Applied Energy, 88, 3548-3555.
https://doi.org/10.1016/j.apenergy.2010.12.012

[11]   Knothe, G. (2006) Analyzing Biodiesel: Standards and Other Methods. Journal of the American Oil Chemists’ Society, 83, 823-833.
https://doi.org/10.1007/s11746-006-5033-y

[12]   Meher, L.C., Sagar, D.V. and Naik, S.N. (2006) Technical Aspects of Biodiesel Production by Transesterification—A Review. Renewable and Sustainable Energy Reviews, 10, 248-268.
https://doi.org/10.1016/j.rser.2004.09.002

[13]   Adams, J.M.M., Toop, T.A., Donnison, I.S. and Gallagher, J.A. (2011) Seasonal Variation in Laminaria digitata and Its Impact on Biochemical Conversion Routes to Biofuels. Bioresource Technology, 102, 9976-9984.
https://doi.org/10.1016/j.biortech.2011.08.032

[14]   Devendra, L.P., Kumar, M.K. and Pandey, A. (2016) Evaluation of Hydrotropic Pretreatment on Lignocellulosic Biomass. Bioresource Technology, 213, 350-358.
https://doi.org/10.1016/j.biortech.2016.03.059

[15]   Goh, C.S. and Lee, K.T. (2010) A Visionary and Conceptual Macroalgae-Based Third-Generation Bioethanol (TGB) Biorefinery in Sabah, Malaysia as an Underlay for Renewable and Sustainable Development. Renewable and Sustainable Energy Reviews, 14, 842-848.
https://doi.org/10.1016/j.rser.2009.10.001

[16]   Hossain, A.B.M.S., Salleh, A., Boyce, A.N., Chowdhury, P. and Naqiuddin, M. (2008) Biodiesel Fuel Production from Algae as Renewable Energy. American Journal of Biochemistry and Biotechnology, 4, 250-254.
https://doi.org/10.3844/ajbbsp.2008.250.254

[17]   Kabutey, A., Herák, D. and Sedlácek, A. (2011) Behaviour of Different Moisture Contents of Jatropha curcas L. Seeds under Compression Loading. Research in Agricultural Engineering, 57, 72-77.
https://doi.org/10.17221/15/2010-RAE

[18]   Lee, J.-Y., Yoo, C., Jun, S.-Y., Ahn, C.-Y. and Oh, H.-M. (2010) Comparison of Several Methods for Effective Lipid Extraction from Microalgae. Bioresource Technology, 101, S75-S77.
https://doi.org/10.1016/j.biortech.2009.03.058

[19]   Kumar, S., Gupta, R., Kumar, G., Sahoo, D. and Kuhad, R.C. (2013) Bioethanol Production from Gracilaria verrucosa, a Red Alga, in a Biorefinery Approach. Bioresource Technology, 135, 150-156.
https://doi.org/10.1016/j.biortech.2012.10.120

[20]   Sahoo, D., Elangbam, G. and Devi, S.S. (2012) Using Algae for Carbon Dioxide Capture and Biofuel Production to Combat Climate Change. Phykos, 42, 32-38.

[21]   Kraan, S. (2013) Mass-Cultivation of Carbohydrate Rich Macroalgae, a Possible Solution for Sustainable Biofuel Production. Mitigation and Adaptation Strategies for Global Change, 18, 27-46.
https://doi.org/10.1007/s11027-010-9275-5

[22]   Sharma, S., Kumar, R., Gaur, R., Agrawal, R., Gupta, R.P., Tuli, D.K., et al. (2015) Pilot Scale Study on Steam Explosion and Mass Balance for Higher Sugar Recovery from Rice Straw. Bioresource Technology, 175, 350-357.
https://doi.org/10.1016/j.biortech.2014.10.112

[23]   Horn, S.J. (2009) Seaweed Biofuels: Production of Biogas and Bioethanol from Brown Macroalgae. VDM, Verlag Dr. Müller.

[24]   Peinado, I., Girón, J., Koutsidis, G. and Ames, J.M. (2014) Chemical Composition, Antioxidant Activity and Sensory Evaluation of Five Different Species of Brown Edible Seaweeds. Food Research International, 66, 36-44.
https://doi.org/10.1016/j.foodres.2014.08.035

[25]   Horn, S.J., Aasen, I.M. and Østgaard, K. (2000) Production of Ethanol from Mannitol by Zymobacter palmae. Journal of Industrial Microbiology and Biotechnology, 24, 51-57.
https://doi.org/10.1038/sj.jim.2900771

[26]   Horn, S.J., Aasen, I.M. and Østgaard, K. (2000) Ethanol Production from Seaweed Extract. Journal of Industrial Microbiology and Biotechnology, 25, 249-254.
https://doi.org/10.1038/sj.jim.7000065

[27]   Enquist-Newman, M., Faust, A.M.E., Bravo, D.D., Santos, C.N.S., Raisner, R.M., Hanel, A., et al. (2014) Efficient Ethanol Production from Brown Macroalgae Sugars by a Synthetic Yeast Platform. Nature, 505, 239.
https://doi.org/10.1038/nature12771

[28]   Wargacki, A.J., Leonard, E., Win, M.N., Regitsky, D.D., Santos, C.N.S., Kim, P.B., et al. (2012) An Engineered Microbial Platform for Direct Biofuel Production from Brown Macroalgae. Science, 335, 308-313.
https://doi.org/10.1126/science.1214547

[29]   Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A.T. and Smith, F. (1956) Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28, 350-356.
https://doi.org/10.1021/ac60111a017

[30]   Miller, G.L. (1959) Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31, 426-428.
https://doi.org/10.1021/ac60147a030

[31]   Magrí, A.D., Magri, A.L., Balestrieri, F., Sacchini, A. and Marini, D. (1997) Spectrophotometric Micro-Method for the Determination of Ethanol in Commercial Beverages. Fresenius’ Journal of Analytical Chemistry, 357, 985-988.
https://doi.org/10.1007/s002160050287

[32]   Schiener, P., Black, K.D., Stanley, M.S. and Green, D.H. (2015) The Seasonal Variation in the Chemical Composition of the Kelp Species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. Journal of Applied Phycology, 27, 363-373.
https://doi.org/10.1007/s10811-014-0327-1

[33]   Ravanal, M.C., Sharma, S., Gimpel, J., Reveco-Urzua, F.E., Øverland, M., Horn, S.J., et al. (2017) The Role of Alginate Lyases in the Enzymatic Saccharification of Brown Macroalgae, Macrocystis pyrifera and Saccharina latissima. Algal Research, 26, 287-293.
https://doi.org/10.1016/j.algal.2017.08.012

[34]   Sharma, S. and Horn, S.J. (2016) Enzymatic Saccharification of Brown Seaweed for Production of Fermentable Sugars. Bioresource Technology, 213, 155-161.
https://doi.org/10.1016/j.biortech.2016.02.090

[35]   Gupta, R., Sharma, K.K. and Kuhad, R.C. (2009) Separate Hydrolysis and Fermentation (SHF) of Prosopis juliflora, a Woody Substrate, for the Production of Cellulosic Ethanol by Saccharomyces cerevisiae and Pichia Stipitis-NCIM 3498. Bioresource Technology, 100, 1214-1220.
https://doi.org/10.1016/j.biortech.2008.08.033

[36]   Kuhad, R.C., Gupta, R., Khasa, Y.P. and Singh, A. (2010) Bioethanol Production from Lantana camara (Red Sage): Pretreatment, Saccharification and Fermentation. Bioresource Technology, 101, 8348-8354.
https://doi.org/10.1016/j.biortech.2010.06.043

[37]   Kuhad, R.C., Mehta, G., Gupta, R. and Sharma, K.K. (2010) Fed Batch Enzymatic Saccharification of Newspaper Cellulosics Improves the Sugar Content in the Hydrolysates and Eventually the Ethanol Fermentation by Saccharomyces cerevisiae. Biomass and Bioenergy, 34, 1189-1194.
https://doi.org/10.1016/j.biombioe.2010.03.009

[38]   Trivedi, N., Gupta, V., Reddy, C.R.K. and Jha, B. (2013) Enzymatic Hydrolysis and Production of Bioethanol from Common Macrophytic Green Alga Ulva fasciata Delile. Bioresource Technology, 150, 106-112.
https://doi.org/10.1016/j.biortech.2013.09.103

[39]   Lee, H.Y., Jung, K.H. and Yeon, J.H. (2011) Repeated-Batch Operation of Surface-Aerated Fermentor for Bioethanol Production from the Hydrolysate of Seaweed Sargassum sagamianum. Journal of Microbiology and Biotechnology, 21, 323-331.

[40]   Jang, J.-S., Cho, Y., Jeong, G.-T. and Kim, S.-K. (2012) Optimization of Saccharification and Ethanol Production by Simultaneous Saccharification and Fermentation (SSF) from Seaweed, Saccharina japonica. Bioprocess and Biosystems Engineering, 35, 11-18.
https://doi.org/10.1007/s00449-011-0611-2

[41]   Khambhaty, Y., Mody, K., Gandhi, M.R., Thampy, S., Maiti, P., Brahmbhatt, H., et al. (2012) Kappaphycus alvarezii as a Source of Bioethanol. Bioresource Technology, 103, 180-185.
https://doi.org/10.1016/j.biortech.2011.10.015

[42]   Kim, N.-J., Li, H., Jung, K., Chang, H.N. and Lee, P.C. (2011) Ethanol Production from Marine Algal Hydrolysates Using Escherichia coli KO11. Bioresource Technology, 102, 7466-7469.
https://doi.org/10.1016/j.biortech.2011.04.071

[43]   Meinita, M.D.N., Hong, Y.-K. and Jeong, G.-T. (2012) Detoxification of Acidic Catalyzed Hydrolysate of Kappaphycus alvarezii (cottonii). Bioprocess and Biosystems Engineering, 35, 93-98.
https://doi.org/10.1007/s00449-011-0608-x

[44]   Park, J.-H., Hong, J.-Y., Jang, H.C., Oh, S.G., Kim, S.-H., Yoon, J.-J., et al. (2012) Use of Gelidium amansii as a Promising Resource for Bioethanol: A Practical Approach for Continuous Dilute-Acid Hydrolysis and Fermentation. Bioresource Technology, 108, 83-88.
https://doi.org/10.1016/j.biortech.2011.12.065

[45]   Wang, X., Liu, X. and Wang, G. (2011) Two-Stage Hydrolysis of Invasive Algal Feedstock for Ethanol Fermentation. Journal of Integrative Plant Biology, 53, 246-252.
https://doi.org/10.1111/j.1744-7909.2010.01024.x

[46]   Yanagisawa, M., Nakamura, K., Ariga, O. and Nakasaki, K. (2011) Production of High Concentrations of Bioethanol from Seaweeds That Contain Easily Hydrolyzable Polysaccharides. Process Biochemistry, 46, 2111-2116.
https://doi.org/10.1016/j.procbio.2011.08.001

[47]   Yeon, J.-H., Seo, H.-B., Oh, S.-H., Choi, W.-S., Kang, D.-H., Lee, H.-Y., et al. (2010) Bioethanol Production from Hydrolysate of Seaweed Sargassum sagamianum. KSBB Journal, 25, 283-288.

[48]   Ramon-Portugal, F., Pingaud, H. and Strehaiano, P. (2004) Metabolic Transition Step from Ethanol Consumption to Sugar/Ethanol. Biotechnology Letters, 26, 1671-1674.
https://doi.org/10.1007/s10529-004-3520-5

[49]   Chen, M., Xia, L. and Xue, P. (2007) Enzymatic Hydrolysis of Corncob and Ethanol Production from Cellulosic Hydrolysate. International Biodeterioration & Biodegradation, 59, 85-89.
https://doi.org/10.1016/j.ibiod.2006.07.011

 
 
Top