MSA  Vol.2 No.11 , November 2011
Structural and Conductivity Studies of Poly(Ethylene Oxide) – Silver Triflate Polymer Electrolyte System
ABSTRACT
Film of PEO containg AgCF3SO3 were prepared by the solution casting technique. Fourier transform infrared (FTIR) spectroscopy have been carried out on a series of complexes containing poly (ethylene oxide) PEO and silver triflate (AgCF3SO3) salt. Spectral analysis of all the samples has revealed the complexation of silver ions with oxygen in PEO. The ac conductivity and electrical modulus of the samples prepared have been analyzed. The ac conductivity was observed to obey the Universal power law. The temperature dependence of the power law exponent n is reasonably interpreted by the overlapping large polaron tunneling (OLPT) model. The imaginary part, M” of electrical modulus shows the formation of dispersion peak. The plot of log conductivity relaxation times and log sigma as a function of salt concentration was in accordance with each other.

Cite this paper
nullN. Gondaliya, D. Kanchan, P. Sharma and P. Joge, "Structural and Conductivity Studies of Poly(Ethylene Oxide) – Silver Triflate Polymer Electrolyte System," Materials Sciences and Applications, Vol. 2 No. 11, 2011, pp. 1639-1643. doi: 10.4236/msa.2011.211218.
References
[1]   D. Baril, C. Michot and M. Armand, “Electrochemistry of Liquids vs. Solids: Polymer Electrolytes,” Solid State Ionics, Vol. 94, No. 1-4, 1997, pp. 35-47. doi:10.1016/S0167-2738(96)00614-5

[2]   M. Deepa, N. Sharma, S. A. Agnihotory and R. Chandra, “FTIR Investigation on Ion—Ion Interactionin Liquid and Gel Polymeric Electrolytes-LiCF3SO3-PC-PMMA,” Jour- nal of Material Science, Vol. 37, No. 37, 2001, pp. 1759- 1765.

[3]   S. A. Suthanthiraraj, R. J Kumar and B. Paul, “Vibrational Spectroscopic and Electrochemical Characteristics of Poly (Propylene Glycol)-Silver Triflate Polymer Electrolyte System,” Ionics, Vol. 16, No. 2, 2009, pp. 145- 151. doi:10.1007/s11581-009-0370-0

[4]   S. A. Suthanthiraraj and D. J. Sheeba, “Formation of Polyethylene Oxide-Based Composite Polymer Electrolytes Blended with Al2O3 Nanoparticles,” Indian Journal of Physics, Vol. 79, No. 7, 2005, pp. 807-813.

[5]   A. M. Rocco, C. P. Fonseca and R. B. Pereira, “A Polymeric Solid Electrolyte Based on a Binary Blend of Poly (Ethylene Oxide), Poly(Methyl Vinyl Ether-Maleic Acid) and LiClO4,” Polymer, Vol. 43, No. 13, 2002, pp. 3601- 3609. doi:10.1016/S0032-3861(02)00173-8

[6]   Z. Tang, J. Wang, Q. Chen, W. He, C. Shen, X. X. Mao and J. Q. Zhang, “A Novel PEO-Based Composite Polymer Electrolyte with Absorptive Glass Mat for Li-ion Batteries,” Electrochimica Acta, Vol. 52, No. 24, 2007, pp. 6638-6643. doi:10.1016/j.electacta.2007.04.062

[7]   M. Sunder and S. Selladurai, “Effect of Fillers on Magnesium-Poly(Ethylene Oxide) Solid Polymer Electrolyte,” Ionics, Vol. 12, No. 4-5, 2006, pp. 281-286. doi:10.1007/s11581-006-0048-9

[8]   N. H. Idris, H. B. Senin and A. K. Arof, “Dielectric Spectra of LiTFSI-doped chitosan/PEO blends,” Ionics, Vol. 13, No. 4, June 2007, pp. 213-217. doi:10.1007/s11581-007-0093-z

[9]   V. Aravindan and P. Vickraman, “A Study of LiBOB- Based Nano Composite Gel Polymer Electrolytes (NCGPE) for Lithium-ion Batttries,” Ionics, Vol. 13, No. 4, 2007, pp. 277-280. doi:10.1007/s11581-007-0106-y

[10]   L. Othman, K. W. Chew and Z. Osman, “Impedance Spectroscopy Studies of Poly(Methyl Methacrylate)-Li- thium Salts Polymer Electrolyte Systems,” Ionics, Vol. 13, No. 5, 2007, pp. 337-342. doi:10.1007/s11581-007-0120-0

[11]   N. Gondaliya, D. K. Kanchan, P. Sharma, M. Jayswal and M. Pant, “Conductivity and Dielectric Behavior of AgCF3SO3 Doped Peo Polymer Films,” Integrated Ferroelectrics, Vol. 117, No. 1, 2010, pp. 1-12. doi:10.1080/10584587.2010.489494

[12]   M. Z. Kufian, S. R. Majid and A. K. Arof, “Dielectric and Conduction Mechanism Studies of PVA-Orthophosphoric Acid Polymer Electrolyte,” Ionics, Vol. 13, No. 4, 2007, pp. 231-234. doi:10.1007/s11581-007-0098-7

[13]   T. Winie and A. K. Arof, “Transport Properties of Hexanoyl Chitosan-Based Gel Electrolyte,” Ionics, Vol. 12, No. 2, 2006, pp. 149-152. doi:10.1007/s11581-006-0026-2

[14]   K. P. Nazeer, S. A. Jocob, M. Thamilselvan, D. Mangalaraj, S. K. Narayandass and J. Yi, “Space-Charge Limited Conduction in Polyaniline Films,” Polymer International, Vol. 53, No. 7, 2004, pp. 898-902. doi:10.1002/pi.1459

[15]   S. R. Elliot, “Use of the Modulus Formalism in the Analysis of ac Conductivity Data for Ionic Glasses,” Journal of Non-Crystalline Solids, Vol. 107, No. 1, 1994, pp. 97-100. doi:10.1016/0022-3093(94)90108-2

[16]   R. Richter and H. Wagner, “The Dielectric Modulus: Relaxation versus Retardation,” Solid State Ionics, Vol. 105, No. 1-4, 1998, pp. 167-173. doi:10.1016/S0167-2738(97)00461-X

[17]   S. Ghosh and A. Ghosh, “Conductivity Relaxation in Mixed Alkali Fluoride Glasses,” Journal of Physics: Condense Matter, Vol. 14, No. 10, 2002, pp. 2531-2540.

[18]   Y. Fu, K. Pathmanathan and J. R. Steven, “Dielectric and Conductivity Relaxation in Poly(Propylene Glycol)-Li- thium triflate Complexes,” Journal of Chemical Physics, Vol.94, No. 9, 1991, pp. 6323-6330. doi:10.1063/1.460420

[19]   P. Jevanandam and S. Vasudevan, “Arrhenius and Non- Ar-Rhenius Conductivites in Intercalated Polymer Electrolytes,” Journal of chemical Physics, Vol. 109, No. 18, 1998, pp. 8109-8118. doi:10.1063/1.477459

 
 
Top