JBM  Vol.6 No.5 , May 2018
Targeting miRNAs in Osteoblast Differentiation under Malnutrition Conditions
Abstract: Aims: Previous studies reported that reduced bone formation was identified in fasting adult female mice compared with the ad libitum control group. An increasing number of studies have shown that miRNAs contribute to bone homeostasis. Unfortunately, there are minor concerns about the underlying mechanisms in osteoblastic differentiation under malnutrition conditions. Methods: We investigated microRNAs (miRNAs) in osteoblastic differentiation under malnutrition conditions using high-throughput bioinformatics approaches. To screen for targeted microRNAs, sequences were quantified by aligning reads to miRbase using miRDeep2 software. Unadjusted p-values were calculated using the Student’s t-test. Genes with a p-value of <0.05 and log 2FC (fold change) ≥ 1 were considered differentially expressed genes (DEGs). DEGs were submitted to Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, respectively. Results: They were mainly enriched in biological process terms type and biological pathways, respectively. Particularly, we evaluated seven microRNAs, mir-494 3p, mir-466, mir-455, mir-708, mir-298, mir-92 and mir-224, which likely play roles in osteoblastogenesis in fasting adult mice. Conclusion: To our knowledge, this is the first study on the expression pattern of miRNA in osteoblasts of malnourished adult mice. These targeting miRNAs may provide a potential therapeutic approach to treat osteoporosis.
Cite this paper: Wang, Y. , He, R. and Zhong, L. (2018) Targeting miRNAs in Osteoblast Differentiation under Malnutrition Conditions. Journal of Biosciences and Medicines, 6, 111-119. doi: 10.4236/jbm.2018.65012.

[1]   Fazeli, P.K. and Klibanski, A. (2014) Anorexia Nervosa and Bone Metabolism. Bone, 66, 39-45.

[2]   Ihle, R. and Loucks, A.B. (2004) Dose-Response Relationships between Energy Availability and Bone Turnover in Young Exercising Women. Journal of Bone and Mineral Research, 19, 1231-1240.

[3]   Devine, A., Dick, I.M., Islam, A.F., Dhaliwal, S.S. and Prince, R.L. (2005) Protein Consumption Is an Important Predictor of Lower Limb Bone Mass in Elderly Women. The American Journal of Clinical Nutrition, 81, 1423-1428.

[4]   Brochmann, E.J., Duarte, M.E., Zaidi, H.A. and Murray, S.S. (2003) Effects of Dietary Restriction on Total Body, Femoral, and Vertebral Bone in SENCAR, C57BL/6, and DBA/2 Mice. Metabolism, 52, 1265-1273.

[5]   Shushimita, S., de Bruijn, M.J., de Bruin, R.W., IJzermans, J.N., Hendriks, R.W. and Dor, F.J. (2014) Dietary Restriction and Fasting Arrest B and T Cell Development and Increase Mature B and T Cell Numbers in Bone Marrow. PLoS ONE, 9, e87772.

[6]   Chen, J.J., He, R., Li, J., Zhang, Y., Qi, J.W., Meng, X.H., et al. (2016) Severe Impaired Bone Formation Was Induced by Short-Term Fasting in Adult Mice. American Journal of Clinical and Experimental Medicine, 4, 212-215.

[7]   Hu, R., Li, H., Liu, W., Yang, L., Tan, Y.F. and Luo, X.H. (2010) Targeting miRNAs in Osteoblast Differentiation and Bone Formation. Expert Opinion on Therapeutic Targets, 14, 1109-1120.

[8]   Taipaleenmaki, H., Bjerre Hokland, L., Chen, L., Kauppinen, S. and Kassem, M. (2012) Micro-RNAs: Targets for Enhancing Osteoblast Differentiation and Bone Formation. European Journal of Endocrinology, 166, 359-371.

[9]   Lian, J.B., Stein, G.S., van Wijnen, A.J., Stein, J.L., Hassan, M.Q., Gaur, T., et al. (2012) MicroRNA Control of Bone Formation and Homeostasis. Nature Reviews Endocrinology, 31, 212-227.

[10]   Talbott, S.M. and Shapses, S.A. (1998) Fasting and Energy Intake Influence Bone Turnover in Lightweight Male Rowers. International Journal of Sport Nutrition, 8, 377-387.

[11]   Friedlander, M.R., Mackowiak, S.D., Li, N., Chen, W. and Rajewsky, N. (2012) miRDeep2 Accurately Identifies Known and Hundreds of Novel MicroRNA Genes in Seven Animal Clades. Nucleic Acids Research, 40, 37-52.

[12]   Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., et al. (2000) Gene Ontology: Tool for the Unification of Biology. The Gene Ontology Consortium. Nature Genetics, 25, 25-29.

[13]   Kanehisa, M. and Goto, S. (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 28, 27-30.

[14]   Wang, J., Zhou, X., Zhu, J., Gu, Y., Zhao, W., Zou, J., et al. (2012) GO-Function: Deriving Biologically Relevant Functions from Statistically Significant Functions. Briefings in Bioinformatics, 13, 216-227.

[15]   Wang, H., Xie, Z., Hou, T., Li, Z., Huang, K., Gong, J., et al. (2017) MiR-125b Regulates the Osteogenic Differentiation of Human Mesenchymal Stem Cells by Targeting BMPR1b. Cellular Physiology and Biochemistry, 41, 530-542.

[16]   Xu, S., Cecilia Santini, G., De Veirman, K., VandeBroek, I., Leleu, X., De Becker, A., et al. (2013) Upregulation of miR-135b Is Involved in the Impaired Osteogenic Differentiation of Mesenchymal Stem Cells Derived from Multiple Myeloma Patients. PLoS ONE, 6, e79752.

[17]   Sato, M.M., Nashimoto, M., Katagiri, T., Yawaka, Y. and Tamura, M. (2009) Bone Morphogenetic Protein-2 Down-Regulates miR-206 Expression by Blocking Its Maturation Process. Biochemical and Biophysical Research Communications, 22, 125-129.

[18]   Wang, X., Guo, B., Li, Q., Peng, J., Yang, Z., Wang, A., et al. (2013) MiR-214 Targets ATF4 to Inhibit Bone Formation. Nature Medicine, 19, 93-100.

[19]   Hupkes, M., Sotoca, A.M., Hendriks, J.M., van Zoelen, E.J. and Dechering, K.J. (2014) MicroRNA miR-378 Promotes BMP2-Induced Osteogenic Differentiation of Mesenchymal Progenitor Cells. BMC Molecular Biology, 27, 15.

[20]   Guo, D., Li, Q., Lv, Q., Wei, Q., Cao, S. and Gu, J. (2014) MiR-27a Targets sFRP1 in hFOB Cells to Regulate Proliferation, Apoptosis and Differentiation. PLoS ONE, 13, e91354.

[21]   Hu, R., Liu, W., Li, H., Yang, L., Chen, C., Xia, Z.Y., et al. (2011) A Runx2/miR-3960/miR-2861 Regulatory Feedback Loop during Mouse Osteoblast Differentiation. The Journal of Biological Chemistry, 8, 12328-12339.

[22]   Iwawaki, Y., Mizusawa, N., Iwata, T., Higaki, N., Goto, T., Watanabe, M., et al. (2015) MiR-494-3p Induced by Compressive Force Inhibits Cell Proliferation in MC3T3-E1 Cells. Journal of Bioscience and Bioengineering, 120, 456-462.

[23]   Zhi, X., Wu, K., Yu, D., Wang, Y., Yu, Y., Yan, P. and Lv, G. (2016) MicroRNA-494 Inhibits Proliferation and Metastasis of Osteosarcoma through Repressing Insulinreceptor Substrate-1. American Journal of Translational Research, 15, 3439-3447.

[24]   Weng, J.H., Yu, C.C., Lee, Y.C., Lin, C.W., Chang, W.W. and Kuo, Y.L. (2016) mMiR-494-3p Induces Cellular Senescence and Enhances Radiosensitivity in Human Oral Squamous Carcinoma Cells. International Journal of Molecular Sciences, 17, 1092.

[25]   Colden, M., Dar, A.A., Saini, S., Dahiya, P.V., Shahryari, V., Yamamura, S., et al. (2017) MicroRNA-466 Inhibits Tumor Growth and Bone Metastasis in Prostate Cancer by Direct Regulation of Osteogenic Transcription Factor RUNX2. Cell Death & Disease, 26, e2572.

[26]   Seo, M., Choi, J.S., Rho, C.R., Joo, C.K. and Lee, S.K. (2015) MicroRNA miR-466 Inhibits Lymphangiogenesis by Targeting Prospero-Related Homeobox 1 in the Alkali Burn Corneal Injury Model. Journal of Biomedical Science, 22, 3.

[27]   Min, Z., Zhang, R., Yao, J., Jiang, C., Guo, Y., Cong, F., et al. (2015) MicroRNAs Associated with Osteoarthritis Differently Expressed in Bone Matrix Gelatin (BMG) Rat Model. International Journal of Clinical and Experimental Medicine, 15, 1009-1017.

[28]   Zhao, Y., Yan, M., Yun, Y., Zhang, J., Zhang, R., Li, Y., et al. (2017) MicroRNA-455-3p Functions as a Tumor Suppressor by Targeting eIF4E in Prostate Cancer. Oncology Reports, 37, 2449-2458.

[29]   Hao, C., Yang, S., Xu, W., Shen, J.K., Ye, S., Liu, X., et al. (2016) MiR-708 Promotes Steroidinduced Osteonecrosis of Femoral Head, Suppresses Osteogenic Differentiation by Targeting SMAD3. Scientific Reports, 2, Article No. 22599.

[30]   Pourshafie, N., Lee, P.R., Chen, K.L., Harmison, G.G., Bott, L.C., Katsuno, M., et al. (2016) MiR-298 Counteracts Mutant Androgen Receptor Toxicity in Spinal and Bulbar Muscular Atrophy. Molecular Therapy, 24, 937-945.

[31]   Barbagallo, D., Piro, S., Condorelli, A.G., Mascali, L.G., Urbano, F., Parrinello, N., et al. (2013) MiR-296-3p, MiR-298-5p and Their Downstream Networks Are Causally Involved in the Higher Resistance of Mammalian Pancreatic α Cells to Cytokine-Induced Apoptosis as Compared to β Cells. BMC Genomics, 14, 62.

[32]   Jian, X., Li, X., Wu, F., Gao, H., Wang, G., Zheng, H., et al. (2017) Overexpression of miR-92a Promotes the Tumor Growth of Osteosarcoma by Suppressing F-boxandWD Repeat-Containing Protein 7. Gene, 606, 10-16.

[33]   Penzkofer, D., Bonauer, A., Fischer, A., Tups, A., Brandes, R.P., Zeiher, A.M., et al. (2014) Phenotypic Characterization of miR-92a-/-mice Reveals an Important Function of miR-92a Inskeletal Development. PLoS ONE, 30, e101153.

[34]   Wang, Z., Lu, Y., Zhang, X., Ren, X., Wang, Y., Li, Z., et al. (2012) Serum Microrna Is a Promising Biomarker for Osteogenesis Imperfecta. Intractable & Rare Diseases Research, 1, 81-85.

[35]   Geng, S., Gu, L., Ju, F., Zhang, H., Wang, Y., Tang, H., et al. (2016) MicroRNA-224 Promotes the Sensitivity of Osteosarcoma Cells to Cisplatin by Targeting Rac1. Journal of Cellular and Molecular Medicine, 20, 1611-1619.

[36]   Huang, L., Dai, T., Lin, X., Zhao, X., Chen, X., Wang, C., et al. (2012) Mi-croRNA-224 Targets RKIP to Control Cell Invasion and Expression of Metastasis Genes in Human Breast Cancer Cells. Biochemical and Biophysical Research Communications, 24, 127-133.

[37]   Gennari, L., Bianciardi, S. and Merlotti, D. (2017) MicroRNAs in Bone Diseases. Osteoporosis International, 28, 1191-1213.