Back
 JBM  Vol.6 No.5 , May 2018
Proinflammatory Signaling Cascades of Periodontopathic Oral Pathogen Porphyromonas gingivalis
Abstract: Porphyromonas gingivalis, is the most prominent member of the bacteria flora associated with pathogenesis of periodontitis, a chronic inflammatory disease resulting in tooth loss. The extent of oral mucosal reaction to P. gingivalis invasion relays heavily on Toll-like receptors (TLRs) that recognize structurally common motifs of pathogens and initiate antibacterial responses. Among the virulence factors of P. gingivalis implicated in TLRs activation and triggering inflammatory responses leading to the development of periodontitis is the bacterium cell-wall lipopolysaccharide (LPS). The engagement by the LPS of oral mucosal TLR4 leads to initiation of signaling events characterized by the activation of mitogen-activated protein kinase (MAPK) and IκB-kinase complex (IKK) cascades, induction of phosphoinositide-specific phospholipase C (PLC)/protein kinase C (PKC)/PI3K pathway, up-regulation in TGF-α ectodomain shedding and EGFR transactivation, and the amplification of proinflammatory signals by spleen tyrosine kinase (Syk). These events, in turn, exert their control over transcription factors implicated in the induction of the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) genes that lead to up-regulation in the inflammatory mediators, PGE2 and NO. The systems involved in transcription factors activation, furthermore, remain under additional regulatory control through S-nitrosylation. Moreover, the LPS-induced TLR4 activation provides a docking site for Syk, the activation of which leads to amplification of the inflammatory signals by affecting transcription factors activation and their assembly to transcriptional complexes. Interestingly, the extent of oral mucosal inflammatory response to P. gingivalis remains under modulatory influence by two biologically active peptide hormones, leptin and ghrelin. Therefore, the presence of these multifunctional peptides in oral mucosa and saliva may be of significance in countering the destructive consequences of P. gingivalis—induced chronic mucosal inflammation that characterizes periodontitis.
Cite this paper: L. Slomiany, B. and Slomiany, A. (2018) Proinflammatory Signaling Cascades of Periodontopathic Oral Pathogen Porphyromonas gingivalis. Journal of Biosciences and Medicines, 6, 63-88. doi: 10.4236/jbm.2018.65009.
References

[1]   Colombo, A.P., Boches, S.K. and Cotton, S.L. (2009) Comparisons of Subgingival Microbial Profiles of Refractory Periodontitis, Severe Periodontitis, and Periodontal Health Using the Human Oral Microbe Identification Microarray. Journal of Periodontology, 80, 1421-1432.
https://doi.org/10.1902/jop.2009.090185

[2]   How, K.Y., Song, K.P. and Chan, K.G. (2016) Porphyromonas gingivalis: An Overview of Periodontopathic Pathogen below the Gum Line. Frontiers of Microbiology, 7, 53.
https://doi.org/10.3389/fmicb.2016.00053

[3]   Eloe-Fadrosh, E.A. and Rosko, D.A. (2013) The Human Microbiome: From Symbiosis to Pathogenesis. Annual Review of Medicine, 64, 145-163.
https://doi.org/10.1146/annurev-med-010312-133513

[4]   Slomiany, B.L., Murty, V.L.N. and Slomiany, A. (1993) Structural Features of Carbohydrate Chains in Human Salivary Mucins. International Journal of Biochemistry, 25, 259-265.
https://doi.org/10.1016/0020-711X(93)90015-7

[5]   Slomiany, B.L., Murty, V.L.N., Piotrowski, J. and Slomiany, A. (1996) Salivary Mucins in Oral Mucosal Defense. General Pharmacology: The Vascular System, 27, 761-771.
https://doi.org/10.1016/0306-3623(95)02050-0

[6]   Groschl, M., Rauch, M., Wagner, R., et al. (2001) Identification of Leptin in Human Saliva. Journal of Clinical Endocrinology and Metabolism, 86, 5234-5239.
https://doi.org/10.1210/jcem.86.11.7998

[7]   Groschl, M., Topf, H.G., Bohlender, J., et al. (2005) Identification of Ghrelin in Human Saliva: Production by the Salivary Glands and Potential Role in Proliferation of Oral Keratinocytes. Clinical Chemistry, 51, 997-1006.
https://doi.org/10.1373/clinchem.2004.040667

[8]   Fabian, T.K., Hermann, P., Beck, A., Fejerdy, P. and Fabian, G. (2012) Salivary Defense Proteins: Their Network and Role in Innate and Acquired Oral Immunity. International Journal of Molecular Sciences, 13, 4295-4320.
https://doi.org/10.3390/ijms13044295

[9]   Dorn, B.R., Burks, J.N., Seifert, K.N. and Progulske-Fox, A. (2000) Invasion of Endothelial and Epithelial Cells by Strains of Porphyromonas gingivalis. FEMS Microbiology Letters, 187, 139-144.
https://doi.org/10.1111/j.1574-6968.2000.tb09150.x

[10]   Wiebe, C.B. and Putnins, E.E. (2000) The Periodontal Disease Classification System of the American Academy of Periodontology—An Update. Journal of Canadian Dental Association, 66, 594-597.

[11]   Bodet, C., Chandad, E. and Grenier, D. (2007) Pathogenic Potential of Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia, the Red Bacterial Complex Associated with Periodontitis. Pathologie Biologie, 55, 154-162.
https://doi.org/10.1016/j.patbio.2006.07.045

[12]   Mysak, J., Pdzimek, S., Sommerova, P., Lyuya-Mi, Y., Bartova, J., Janatova, T., Prochazkova, J. and Duskova, J. (2014) Porphyromonas gingivalis: Major Periodontopathic Pathogen Overview. Journal of Immunology Research, 2014, Article ID: 476068.
https://doi.org/10.1155/2014/476068

[13]   Slot, J. (1976) The Predominant Cultivable Organism in Juvenile Periodontitis. Scandinavian Journal of Dental Research, 84, 1-10.
https://doi.org/10.1111/j.1600-0722.1976.tb00454.x

[14]   Saxen, L. (1980) Juvenile Periodontitis. Journal of Periodontology, 7, 1-19.
https://doi.org/10.1111/j.1600-051X.1980.tb01944.x

[15]   Datta, H.K., Ng, W.F., Walker, J.A., Tuck, S.P. and Varanasi, S.S. (2008) The Cell Biology of Bone Metabolism. Journal of Clinical Pathology, 61, 577-587.
https://doi.org/10.1136/jcp.2007.048868

[16]   Bostanci, N. and Belibasakis, G.N. (2012) Porphyromonas gingivalis: An Invasive and Evasive Opportunistic Oral Pathogen. FEMS Microbiology Letters, 333, 1-9.
https://doi.org/10.1111/j.1574-6968.2012.02579.x

[17]   Amano, A. (2007) Disruption of Epithelial Barrier and Impairment of Cellular Function by Porphyromonas gingivalis. Frontiers in Bioscience, 12, 3965-3974.
https://doi.org/10.2741/2363

[18]   Nagano, K., Hasegawa, Y., Yoshida, T. and Yoshimura, F. (2015) A Major Fimbrilin Variant of Mfa1 Fimbriae in Porphyromonas gingivalis. Journal of Dental Research, 94, 1143-1148.
https://doi.org/10.1177/0022034515588275

[19]   Kristoffersen, A.K., Solli, S.J., Nguyen, T.D. and Ensersen, M. (2015) Association of the rgpB Gigipain Genotype to the Major Fimbriae (fimA) Genetype in Clinical Isolates of the Periodontal Pathogen Porphyromonas gingivalis. Journal of Oral Microbiology, 7, Article 29124.
https://doi.org/10.3402/jom.v7.29124

[20]   Salminen, A., Gursoy, U.K., Paju, S., Hyvarinen, K., Mantyla, P., Buhlin, K., Kononen, E., Nieminen, M.S., Sorsa, T., Sinisalo, J. and Pussinen, P.J. (2014) Salivary Biomarkers of Bacterial Burden, Inflammatory Response, and Tissue Destruction in Periodontitis. Journal of Clinical Periodontology, 41, 442-450.
https://doi.org/10.1111/jcpe.12234

[21]   DeLeon-Pannell, K.Y., de Castro Bras, L.E. and Lindsey, M.L. (2013) Circulating Porphyromonas gingivalis Lipopolysaccharide Resets Cardiac Homeostasis in Mice through Matrix Metalloproteinase-9-Dependent Mechanism. Physiological Reports, 1, e00079.
https://doi.org/10.1002/phy2.79

[22]   Slomiany, B.L. and Slomiany, A. (2016) Role of Rac1/p38 and ERK-Dependent Cytosolic Phospholipase A2 Activation in Porphyromonas gingivalis-Evoked Induction in Matrix Metalloproteinase-9 (MMP-9) Release by Salivary Gland Cells. Journal of Biosciences and Medicines, 4, 68-79.
https://doi.org/10.4236/jbm.2016.44010

[23]   Sochalska, M. and Potempa, J (2017) Manipulation of Neutrophils by Porphyromonas gingivalis in the Development of Periodontitis. Frontiers in Cellular and Infection microbiology, 7, 197.
https://doi.org/10.3389/fcimb.2017.00197

[24]   Slomiany, B.L., Murty, V.L.N., Piotrowski, J., Liau, Y.H. and Slomiany, A. (1993) Glycosulfatase Activity of Porphyromonas gingivalis. A Bacterium Associated with Periodontal Disease. Biochemistry and Molecular Biology International, 29, 973-980.

[25]   Slomiany, B.L. and Slomiany, A. (2002) Porphyromonas gingivalis Lipopolysaccharide Interferes with Salivary Mucin Synthesis through Inducible Nitric Oxide Synthase Activation by ERK and p38 Kinase. Biochemical and Biophysical Research Communication, 297, 1149-1153.
https://doi.org/10.1016/S0006-291X(02)02354-9

[26]   Wang, P.L. and Ohura, K. (2002) Porphyromonas gingivalis Lipopolysaccharide Signaling in Gingival Fibroblasts-CD14 and Toll-Like Receptors. Critical Reviews in Oral Biology and Medicine, 13, 132-142.
https://doi.org/10.1177/154411130201300204

[27]   Slomiany, B.L. and Slomiany, A. (2003) Activation of Peroxisome Proliferator-Activated Receptor γ Impedes Porphyromonas gingivalis Lipopolysaccharide Interfer-ence with Salivary Mucin Synthesis through Phosphatidylinositol 3-Kinase/ERK Pathway. Journal of Physiology and Pharmacology, 54, 3-15.

[28]   Slomiany, B.L. and Slomiany, A. (2005) Role of Modulation of Porphyromonas gingivalis Lipopolysac-charide-Induced Up-Regulation of Endothelin-1 in Salivary Gland Acinar Cells. IUBMB Life, 57, 591-595.
https://doi.org/10.1080/15216540500215598

[29]   Slomiany, B.L. and Slomiany, A. (2010) Suppression by Ghrelin of Porphyromonas gingivalis-Induced Constitutive Nitric Oxide Synthase S-Nitrosylation and Apoptosis in Salivary Gland Acinar Cells. Journal of Signal Transduction, 2010, Article ID: 643642.
https://doi.org/10.1155/2010/643642

[30]   Slomiany, B.L. and Slomiany, A. (2011) Cyclooxygenase-2 S-Nitrosylation in Salivary Gland Acinar Cell Inflammatory Responses to Porphyromonas gingivalis: Modulatory Effect of Ghrelin. Advances in Bioscience and Biotechnology, 2, 434-442.
https://doi.org/10.4236/abb.2011.26064

[31]   Slomiany, B.L. and Slomiany, A. (2015) Porphyromonas gingi-valis-Stimulated TACE Activation for TGF-α Ectodomain Shedding and EGFR Transactivation in Salivary Gland Cells Requires Rac1-Dependent p38 MAPK Membrane Localization. Journal of Biosciences and Medicines, 3, 42-53.
https://doi.org/10.4236/jbm.2015.311005

[32]   Carpenter, S. and O’Neill, L.A.J. (2009) Recent Insights into the Structure of Toll-Like Receptors and Posttranslational Modifications of their Associated Signaling Proteins. Biochemical Journal, 422, 1-10.
https://doi.org/10.1042/BJ20090616

[33]   Kawai, T. and Akira, S. (2010) The Role of Pattern-Recognition Receptors in Innate Immunity: Update on Toll-Like Receptors. Nature Immunology, 11, 373-384.
https://doi.org/10.1038/ni.1863

[34]   Farrugia, M. and Baron, B. (2017) The Role of Toll-Like Receptors in Autoimmune Diseases through Failure of the Self-Recognition Mechanism. International Journal of Inflammation, 2017, Article ID: 8391230.
https://doi.org/10.1155/2017/8391230

[35]   Wang, J.E., Dahle, M.K., McDonald, M., Foster, S.J., Aasen, A.O. and Thiemermann, C. (2003) Peptidoglycan and Lipoteichoic Acid in Gram-Positive Bacterial Sepsis: Receptors, Signal Transduction, Biological Effects, and Synergism. Shock, 20, 402-414.
https://doi.org/10.1097/01.shk.0000092268.01859.0d

[36]   Smith, S.M. (2014) Role of Toll-Like Receptors in Helicobacter pylori Infection and Immunity. World Journal of Gastrointestinal Physiology, 5, 133-146.
https://doi.org/10.4291/wjgp.v5.i3.133

[37]   Slomiany, B.L. and Slomiany, A. (2017) Role of LPS-Elicited Signaling in Triggering Gastric Mucosal Inflammatory Responses to H. pylori: Modulatory Effect of Ghrelin. Inflammopharmacology, 25, 415-429.
https://doi.org/10.1007/s10787-017-0360-1

[38]   Amith, S.R., Abdulkhalek, S. and Szewczuk, M.R. (2016) Role of Glycosylation in Toll-Like Receptor Activation and Pro-Inflammatory Responses. In: Weiderschain, G., Ed., Glycobiology and Human Diseases, CRC, Boca Raton, FL, 165-184.

[39]   Park, B.S. and Lee, J.O. (2013) Recognition of Lipo-polysaccharide Pattern by TLR4 Complexes. Experimental & Molecular Medicine, 45, e66.
https://doi.org/10.1038/emm.2013.97

[40]   Chen, Z.J. (2012) Ubiquitination in Signaling to and Activation of IKK. Immunological Reviews, 246, 95-106.
https://doi.org/10.1111/j.1600-065X.2012.01108.x

[41]   Miller, Y.I., Choi, S.H., Wiesner, P. and Bae, Y.S. (2012) The SYK Side of TLR4: Signaling Mechanism in Response to LPS and Minimally Oxidized LDL. British Journal of Pharmacology, 167, 990-999.
https://doi.org/10.1111/j.1476-5381.2012.02097.x

[42]   Slomiany, B.L. and Slomiany, A. (2018) Role of Protein Kinase Cδ-Mediated Spleen Tyrosine Kinase (SYK) Phosphorylation on Ser in the Amplification of Oral Mucosal Inflammatory Responses to Porphyromonas gingivalis. Journal of Biosciences and Medicines, 6, 70-85.
https://doi.org/10.4236/jbm.2018.63005

[43]   Coats, S.R., Jones, J.W., Do, C.T., Braham, P.M., Bainbridge, B.W., To, T.T., Goodlett, D.R., Ernst, R.K. and Darveau, R.P. (2009) Human Tool-Like Receptor 4 Responses to P. gingivalis Are Regulated by Lipid A 1- and 4’-Phosphatase Activities. Cellular Microbiology, 11, 1587-1599.
https://doi.org/10.1111/j.1462-5822.2009.01349.x

[44]   Trent, M.S., Stead, C.M., Tran, A.X. and Hankins, J.V. (2006) Diversity of Endotoxin and Its Impact on Pathogenesis. Journal of Endotoxin Research, 12, 205-223.

[45]   Cohen, S. (1962) Isolation of a Mouse Submaxillary Gland Protein Accelerating Incisors Eruption and Eyelid Opening in the Newborn Animal. Journal of Biological Chemistry, 237, 1555-1562.

[46]   Carpenter, G. and Cohen, S. (1979) Epidermal Growth Factor. Annual Review of Biochemistry, 48, 193-216.
https://doi.org/10.1146/annurev.bi.48.070179.001205

[47]   Matarese, G., Moschos, S. and Mantzoros, S. (2005). Leptin in Immunology. Journal of Immunology, 174, 3137-3142.
https://doi.org/10.4049/jimmunol.174.6.3137

[48]   Hallas, J.L. and Friedman, J.M. (1997) Leptin and Its Receptor. Endocrinology, 155, 215-216.

[49]   Breidert, M., Miehlke, S., Glasgow, A., et al. (1999) Leptin and Its Receptors in Normal Human Gastric Mucosa and in Helicobacter pylori-Associated Gastritis. Scandinavian Journal of Gastroenterology, 34, 954-961.
https://doi.org/10.1080/003655299750025039

[50]   Slomiany, B.L. and Slomiany, A. (2003) Leptin Suppresses Porphyromonas gingivalis Lipopolysaccharide Interference with Salivary Mucin Synthesis. Biochemical and Biophysical Research Communications, 312, 1099-1103.
https://doi.org/10.1016/j.bbrc.2003.11.035

[51]   Ogunwobi, O., Mutungi, G. and Beales, I.L.P. (2006) Leptin Stimulates Proliferation and Inhibits Apoptosis in Barrett’s Esophageal Adenocarcinoma Cells by Cyclooxygenase-2-Dependent, Prostaglandin-E2-Medited Transactivation of the Epidermal Growth Factor Receptor and c-Jun NH2-Terminal Kinase Activation. Endocrinology, 147, 4505-4516.
https://doi.org/10.1210/en.2006-0224

[52]   Slomiany, B.L. and Slomiany, A. (2008) Leptin Protection of Salivary Gland Acinar Cells against Ethanol Cytotoxicity Involves Src Kinase-Mediated Parallel Activation of Prostaglandin and Constitutive Nitric Oxide Synthase Pathways. Inflammopharmacology, 16, 76-82.
https://doi.org/10.1007/s10787-007-1650-9

[53]   Kojima, M. and Kangawa, K. (2005) Ghrelin: Structure and Function. Physiological Reviews, 85, 495-555.
https://doi.org/10.1152/physrev.00012.2004

[54]   Xu, X., Jhun, B.S., Ha, C.H. and Jin, Z.G. (2008) Molecular Mechanism of Ghrelin-Mediated Endothelial Nitric-Oxide Synthase Activation. Endocrinology, 149, 4183-4192.
https://doi.org/10.1210/en.2008-0255

[55]   Lodeiro, P., Theodoropoulous, M., Pardo, M., Casanueva, F.F. and Camina, J.P. (2009) c-Src Regulates Akt Signaling in Response to Ghrelin via β-Arrestin Signaling-Independent and -Dependent Mechanism. PLoS ONE, 4, e4686.
https://doi.org/10.1371/journal.pone.0004686

[56]   Slomiany, B.L. and Slomiany, A. (2011) Ghrelin Protects against the Detrimental Consequences of Porphyromonas gingivalis-Induced Akt Inactivation through S-nitrosylation on Salivary Mucin Synthesis. International Journal of Inflammation, 2011, Article ID: 807279.
https://doi.org/10.4061/2011/807279

[57]   Slomiany, B.L. and Slomiany, A. (2011) Ghrelin-Induced cSrc Activation through Constitutive Nitric Oxide Synthase-Dependent S-nitrosylation in Modulation of Salivary Gland Acinar Cell Inflammatory Responses to Porphyromonas gingivalis. American Journal of Molecular Biology, 2, 43-51.
https://doi.org/10.4236/ajmb.2011.12006

[58]   Slomiany, B.L. and Slomiany, A. (2006) Leptin Modulates the Detrimental Effect of Porphyromonas gingivalis Lipopolysaccharide-Induced Cytosolic Phospholipase A2 Activation on Salivary Mucin Synthesis via ERK-Signal Transduction. InflammoPharmacology, 14, 250-255.
https://doi.org/10.1007/s10787-006-1525-5

[59]   Cuzzocrea, S. and Salvemini, D. (2007) Molecular Mechanisms Involved in Reciprocal Regulation of Cyclooxygenase and Nitric Oxide Synthase Enzymes. Kidney International, 71, 290-297.

[60]   Slomiany, B.L. and Slomiany, A. (2010) Ghrelin Protection against Cytotoxic Effect of Ethanol on Rat Salivary Mucin Synthesis Involves Cytosolic Phospholipase A2 Activation through S-Nitrosylation. International Journal of Biomedical Sciences, 6, 37-44.

[61]   Korhonen, R., Lahti, A., Kankaanranta, H. and Moilanen, E. (2005) Nitric Oxide Production and Signaling in Inflammation. Current Drug Targets: Inflammation & Allergy, 4, 471-479.
https://doi.org/10.2174/1568010054526359

[62]   Sibilia, V., Pagani, F., Rindi, G., et al. (2008) Central Ghrelin Gastroprotection Involves Nitric Oxide/Prostaglandin Cross-Talk. British Journal of Pharmacology, 154, 688-697.
https://doi.org/10.1038/bjp.2008.120

[63]   Ricciotti, E. and FitzGerald, G.A. (2011) Prostaglandins and Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 986-1000.
https://doi.org/10.1161/ATVBAHA.110.207449

[64]   Agard, M., Asakrah, S. and Morici, L.A. (2013) PGE2 Suppression of Innate Immunity during Mucosal Bacterial Infection. Frontiers in Cellular and Infection Microbiology, 3, Article 45.
https://doi.org/10.3389/fcimb.2013.00045

[65]   Slomiany, B.L. and Slomiany, A. (2010) Role of Ghrelin in Modulation of S-Nitrosylation-Dependent Akt Inactivation Induced in Salivary Gland Acinar Cells by Porphyromonas gingivalis. Health, 12, 1448-1455.
https://doi.org/10.4236/health.2010.212215

[66]   Slomiany, B.L. and Slomiany, A. (2010) Constitutive Nitric Oxide Synthase-Mediated Caspase-3 S-Nitrosylation in Ghrelin Protection against Porphyromonas gingivalis-Induced Salivary Gland Apoptosis. Inflammopharmacology, 18, 119-125.
https://doi.org/10.1007/s10787-010-0035-7

[67]   Xu, L., Han, C. and Wu, T. (2008) Activation of Cytosolic Phospholipase A2α through Nitric Oxide-Induced S-Nitrosylation. Involvement of Inducible Nitric-Oxide Synthase and Cyclooxygenase-2. Journal of Biological Chemistry, 283, 3077-3087.
https://doi.org/10.1074/jbc.M705709200

[68]   Slomiany, B.L. and Slomiany, A. (2011) Ghrelin Suppression of Helicobacter pylori-Induced Gastric Mucosal iNOS Is Mediated through the Inhibition of IKK-β Activation by c-NOS-Dependent S-Nitrosylation. Open Journal of Cell Biology, 1, 1-10.
https://doi.org/10.4236/ojcb.2011.11001

[69]   Ye, Y., Martinez, J.D., Perez-Polo, R.J., Lin, Y., Uretsky, B.F. and Birnbaum, Y. (2008) The Role of eNOS, iNOS, and NF-κB in Upregulation and Activation of Cyclooxygenase-2 and Infarct Size Reduction by Atorvastin. American Journal of Physiology-Heart and Circulatory Physiology, 295, H343-H351.
https://doi.org/10.1152/ajpheart.01350.2007

[70]   Cuadrado, A. and Nebreda, A.R. (2010) Mechanism and Function of p38 MAPK Signaling. Biochemistry Journal, 429, 403-417.
https://doi.org/10.1042/BJ20100323

[71]   Slomiany, B.L. and Slomiany, A. (2013) Involvement of p38 MAPK-Dependent Activation Protein (AP-1) Activation in Modulation of Gastric Mucosal Inflammatory Responses to Helicobacter pylori by Ghrelin. Inflammopharmacology, 21, 67-78.
https://doi.org/10.1007/s10787-012-0141-9

[72]   Rieke, C., Papendieck, A., Sokolova, O. and Neumann, M. (2011) Helicobacter pylori-Induced Tyrosine Phosphorylation of IKKβ Contributes to NF-κB Activation. Journal of Biological Chemistry, 392, 387-393.

[73]   Slomiany, B.L. and Slomiany, A. (2013) Induction in Gastric Mucosal Prostaglandin and Nitric Oxide by Helicobacter pylori Is Dependent on MAPK/ERK-Mediated Activation of IKK-β and cPLA2: Modulatory Effect of Ghrelin. Inflammopharmacology, 21, 241-251.
https://doi.org/10.1007/s10787-013-0169-5

[74]   Caivano, M., Gorgoni, B., Cohen, P. and Poli, V. (2001) The Induction of Cyclooxygenase-2 mRNA in Macrophages Is Biphasic and Requires Both CCAAT Enhancer-Binding Protein β (C/EBPβ) and C/EBPδ Transcription Factors. Journal of Biological Chemistry, 276, 48693-48701.
https://doi.org/10.1074/jbc.M108282200

[75]   Grishin, A.V., Wang, J., Potoka, D.A., et al. (2006) Lipopolysaccharide Induces Cyclooxygenase-2 in Intestinal Epithelium via a Non-Canonical p38 MAPK Pathway. Journal of Immunology, 176, 580-588.
https://doi.org/10.4049/jimmunol.176.1.580

[76]   Kang, Y.J., Wingerd, B.A., Arakawa, T. and Smith, W.L. (2006) Cyclooxygenase-2 Gene Transcription in a Macrophage Model of Inflammation. Journal of Immunology, 177, 8111-8122.
https://doi.org/10.4049/jimmunol.177.11.8111

[77]   Lopez-Bergami, P., Lau, E. and Ronai, Z. (2010) Emerging Roles of ATF2 and the Dynamic of AP1 Network in Cancer. Nature Reviews Cancer, 10, 65-76.
https://doi.org/10.1038/nrc2681

[78]   Slomiany, B.L. and Slomiany, A. (2007) Alteration by Indomethacin in Proin-flammatory Consequences of Salivary Gland Cytosolic Phospholipase A2 Activation by Porphyromonas gingivalis: Role of Leptin. Journal of Applied Research, 7, 127-136.

[79]   Lin, C.C., Lin, W.N., Wang, W.J., et al. (2009) Functional Coupling of COX-2 and cPLA2 Induced by ATP in Rat Vascular Smooth Muscle Cells: Role of ERK1/2, p38 MAPK, and NF-κB. Cardiovascular Research, 82, 522-531.

[80]   Kadamur, G. and Ross, E.M. (2013) Mammalian Phospholipase C. Annual Review of Physiology, 75, 127-154.
https://doi.org/10.1146/annurev-physiol-030212-183750

[81]   Slomiany, B.L. and Slomiany, A. (2014) Modulation of Gastric Mucosal Inflammatory Responses to Helicobacter pylori via Ghrelin-Induced Protein Kinase Cδ Tyrosine Phosphorylation. Inflammopharmacology, 22, 251-262.
https://doi.org/10.1007/s10787-014-0206-z

[82]   Gong, P., Angelini, D.J., Yang, S., et al. (2008) TLR4 Signaling Is Coupled to SRC Family Kinase Activation, Tyrosine Phosphorylation of Zonula Adherens Proteins, and Opening of the Paracellular Pathway in Hlung Microvascular Endothelia. Journal of Biological Chemistry, 283, 13437-13449.
https://doi.org/10.1074/jbc.M707986200

[83]   Deason-Towne, F., Perraud, A.L. and Schmitz, C. (2012) Identification of Ser/Thr Phosphorylation Sites in the C2-Domain of Phospholipase Cγ2 (PLCγ2) Using TRPM7-Kinase. Cell Signaling, 24, 2070-2075.
https://doi.org/10.1016/j.cellsig.2012.06.015

[84]   Harden, T.K., Hicks, S.N. and Sondek, J. (2009) Phospholipase C Isozymes as Effectors of Ras Superfamily GTPases. Journal of Lipid Research, 50, S243-S248.
https://doi.org/10.1194/jlr.R800045-JLR200

[85]   Parri, M. and Chiarugi, P. (2010) Rac and Rho GTPases in Cancer Cell Motility Control. Cell Communication and Signaling, 8, 23-37.
https://doi.org/10.1186/1478-811X-8-23

[86]   Boulter, E., Estrach, S., Gracia-Mata, R. and Feral, C.C. (2012) Off the Beaten Paths: Alternative and Crosstalk Regulation of Rho GTPases. FASEB Journal, 26, 469-479.

[87]   Jun, J.E., Rubio, I. and Roose, J.P. (2013) Regulation of Ras Exchange Factors and Cellular Localization of Ras Activation by Lipid Messengers in T Cells. Frontiers in Immunology, 4, 239.
https://doi.org/10.3389/fimmu.2013.00239

[88]   Slomiany, B.L. and Slomiany, A. (2015) Mechanism of Rac1-Induced Amplification in Gastric Mucosal Phospholipase Cγ2 Activation in Response to Helicobacter pylori: Modulatory Effect of Ghrelin. Inflammopharmacology, 23, 101-109.
https://doi.org/10.1007/s10787-015-0231-6

[89]   Yao, H.Y., Chen, L., Wang, J., et al. (2011) Inhibition of Rac Activity Alleviates Lipopolysaccharide-Induced Acute Pulmonary Injury in Mice. Biochimica et Biophysica Acta (BBA)-General Subjects, 1810, 666-674.
https://doi.org/10.1016/j.bbagen.2011.03.020

[90]   Slomiany, B.L. and Slomiany, A. (2015) Porphyromonas gingivalis-Induced GEF Dock180 Activation by Src/PKCδ-Dependent Phosphorylation Mediates PLCγ2 Amplification in Salivary Gland Acinar Cells: Effect of Ghrelin. Journal of Biosciences and Medicines, 3, 66-77.
https://doi.org/10.4236/jbm.2015.37008

[91]   McElroy, S.J., Hobbs, S., Kallen, M., et al. (2012) Transactivation of EGFR by LPS Induces COX-2 Expression in Enterocytes. PLoS ONE, 7, e38373.
https://doi.org/10.1371/journal.pone.0038373

[92]   Slomiany, B.L. and Slomiany, A. (2013) Role of EGFR Transactivation in the Amplification of Helicobacter pylori-Elicited Induction in Gastric Mucosal Expression of COX-2 and iNOS. OA Inflammation, 1, 1.
https://doi.org/10.13172/2052-787X-1-1-412

[93]   Trussoni, C.E., Tabibian, J.H., Splinter, P.L. and O’Hara, S.P. (2015) Lipopolysaccharide (LPS)-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR). PLoS ONE, 10, e0125793.
https://doi.org/10.1371/journal.pone.0125793

[94]   Finzi, L., Shao, M.X.G., Paye, F., Housset, C. and Nadel, J.A. (2009) Lipopolysaccharide Initiates a Positive Feedback of Epidermal Growth Factor Receptor Signaling by Prostaglandin E2 in Human Biliary Carcinoma Cells. The Journal of Immunology, 182, 2269-2276.
https://doi.org/10.4049/jimmunol.0801768

[95]   Ohsu, H., Dempsey, P. and Eguchi, S. (2006) ADAMs as Mediators of EGF. Receptor Transactivation by G Protein-Coupled Receptors. American Journal of Cell Physiology, 291, C1-C10.

[96]   Slomiany, B.L and Slomiany, A. (2004) Porphyromonas gingivalis Lipopolysaccharide-Induced Up-Regulation in Endothelin-1 Interferes with Salivary Mucin Synthesis via Epidermal Growth Factor Receptor Transactivation. IUBMB Life, 56, 601-607.
https://doi.org/10.1080/15216540400020361

[97]   Bergin, D.A., Greene, C.M., Sterchi, E.E., et al. (2008) Activation of the Epidermal Growth Factor Receptor (EGFR) by a Novel Metalloprotease Pathway. Journal of Biological Chemistry, 283, 31736-31744.
https://doi.org/10.1074/jbc.M803732200

[98]   Xu, P. and Derynck, R. (2010) Direct Activation of TACE-Mediated Ectodomain Shedding by p38 MAP Kinase Regulates EGF Receptor-Dependent Cell Proliferation. Molecular Cell, 37, 551-566.

[99]   Slomiany, B.L. and Slomiany, A. (2000) Aspirin Ingestion Impairs Oral Mucosal Ulcer Healing by Inducing Membrane-Bound Tumor Necrosis Factor-α Release. IUBMB Life, 50, 391-395.

[100]   Kong, L. and Ge, B.X. (2008) MyD88-Independent Activation of a Novel Actin-Cdc42/Rac Pathway Is Required for Toll-like Receptor-Stimulated Phagocy-tosis. Cell Research, 18, 745-755.
https://doi.org/10.1038/cr.2008.65

[101]   Lin, Y.C., Huang, D.Y., Chu, C.L. and Lin, W.W. (2010) Anti-Inflammatory Actions of Syk Inhibitors in Macrophages Involve Non-Specific Inhibition of Toll-Like Receptors-Mediated JNK Signaling Pathway. Molecular Immunology, 47, 1569-1578.
https://doi.org/10.1016/j.molimm.2010.01.008

[102]   Choi, S.H., Wiesner, P., Almazan, F., Kim, J. and Miller, Y.I. (2012) Spleen Tyrosine Kinase Regulates AP-1 Dependent Transcriptional Response to Minimally Oxidized LDL. PLoS ONE, 7, e32378.
https://doi.org/10.1371/journal.pone.0032378

[103]   Yi, Y.S., Son, Y.J., Ryou, C., Sung, G.G., Kim, J.H. and Cho, J.Y. (2014) Functional Roles of Syk in Macrophage-Mediated Inflammatory Responses. Mediators of Inflammation, 2014, Article ID: 270302.
https://doi.org/10.1155/2014/270302

[104]   Wang, J.G. and Aikawa, M. (2015) Toll-Like Receptors and Src-Family Kinases in Atherosclerosis—Focus on Macrophages. Circulation Journal, 79, 2332-2334.

[105]   Bohnenberger, H., Oellerich, T., Engelke, M., Hsiao, H.H., Urlaub, H. and Wienands, J. (2011) Complex Phosphorylation Dynamics Control the Composition of the Syk Interactome in B Cells. European Journal of Immunology, 41, 1550-1562.
https://doi.org/10.1002/eji.201041326

[106]   Elsori, D.H., Yakubenko, V.P., Roome, T., Thiagarajan, P.S., Bhattacharjee, A., Yadav, S.P. and Cathcart, M.K. (2011) Protein Kinase Cδ Is a Critical Component of Detectin-1 Signaling in Primary Human Monocytes. Journal of Leukocyte Biology, 90, 599-611.

[107]   Bijli, K.M., Fazal, F., Minhajuddin, M. and Rahman, A. (2008) Activation of Syk by Protein Kinase C-δ Regulates Thrombin-Induced Intracellular Adhesion Molecule-1 Expression in Endothelial Cells via Tyrosine Phosphorylation of RelA/p65. Journal of Biological Chemistry, 283, 14674-14684.
https://doi.org/10.1074/jbc.M802094200

[108]   Kazi, J.U. (2011) The Mechanism of Protein Kinase C Regulation. Frontiers in Biology, 6, 328-336.

 
 
Top