Back
 MSA  Vol.9 No.5 , May 2018
Effect of the Addiction of Metal Oxide Nanoparticles on the Physical, Chemical and Thermal Properties of PVA Based Nanocomposites
Abstract: In this study, poly(vinyl alcohol) (PVA)-based nanocomposites consisting of metallic oxide nanoparticles (TiO2, ZnO, ZrO2) were obtained from an aqueous solution of 7% PVA, in order to compare the microstructural, and physical properties of bionanocomposite films reinforced with various loading contents (0.1%, 0.2% and 0.3% w/w). They were evaluated regarding their molecular toughness through Nuclear Magnetic Resonance (NMR), regarding their chemical structural through Fourier Transform Infrared Spectroscopy (FTIR), regarding their crystallinity throught X-ray Diffraction (XRD), and regarding termal properties through Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The NMR results showed that the smallest concentrations of these oxides have a tendency to disperse better in the polymeric matrix, improving the structural toughness. Besides, changes in the termal resistance of the material were found with the use of TGA and DSC.
Cite this paper: Couto de Azevedo Gonçalves Mota, R. , Oliveira da Silva, E. and Rodrigues de Menezes, L. (2018) Effect of the Addiction of Metal Oxide Nanoparticles on the Physical, Chemical and Thermal Properties of PVA Based Nanocomposites. Materials Sciences and Applications, 9, 473-488. doi: 10.4236/msa.2018.95033.
References

[1]   Ye, M., Mohanty, P. and Ghosh, G. (2014) Morphology and Properties of Poly Vinyl Alcohol (PVA) Scaffolds: Impact of Process Variables. Materials Science and Engineering: C, 42, 289-294.
https://doi.org/10.1016/j.msec.2014.05.029

[2]   Gaaz, T.S., Sulong, A.B., Akhtar, M.N., Kadhum, A.A.H., Mohamad, A.B. and Al-Amiery, A.A. (2015) Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites. Molecules, 20, 22833-22847.

[3]   Baker, M.I., Walsh, S.P., Schwartz, Z. and Boyan, B.D. (2012) Review A Review of Polyvinyl Alcohol and Its Uses in Cartilage and Orthopedic Applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 5, 1-7.

[4]   Ghosh, S., Sharma, A. and Talukder, G. (1992) Zirconium. An Abnormal Trace Element in Biology. Biological Trace Element Research, 35, 247-271.

[5]   Liu, D., Yi, C., Zhang, D., Zhang, J. and Yang, M. (2010) Inhibition of Proliferation and Differentiation of Mesenchymal Stem Cells by Carboxylated Carbon Nanotubes. ACS Nano, 4, 2185-2195.
https://doi.org/10.1021/nn901479w

[6]   Costa, A.C.F.M., Vilar, M.A., Lira, H.L., Kiminami, R.H.G.A., Gama, L., Federal, U., Grande, D.C., Grande, C. and Carlos, S. (2006) Síntese e caracterizacao de nanopartículas de TiO 2 (Synthesis and characterization of TiO 2 nanoparticles). Ceramica, 52, 255-259.
https://doi.org/10.1590/S0366-69132006000400007

[7]   Haldorai, Y. and Shim, J. (2016) Novel Chitosan-TiO2 Nanohybrid: Preparation, Characterization, Antibacterial and Photocatalytic Properties. Polymer Composites, 25, 327-333.

[8]   Y. Zhang, Nayak, T.R., Hong, H. and Cai, W. (2014) Biomedical Applications of Zinc Oxide Nanomaterials. Current Molecular Medicine, 13, 1633-1645.
https://doi.org/10.2174/1566524013666131111130058

[9]   Hong, H., Shi, J., Yang, Y., Zhang, Y., Engle, J.W., Nickles, R.J., Wang, X. and Cai, W. (2011) Cancer-Targeted Optical Imaging with Fluorescent Zinc Oxide Nanowires. Nano Left, 11, 3744-3750.

[10]   Bunn, C.W. (1948) Crystal Structure of Polyvinyl Alcohol. Nature, 161, 929-930.
https://doi.org/10.1038/161929a0

[11]   Guirguis, O.W. and Moselhey, M.T.H. (2012) Thermal and Structural Studies of Poly(vinyl alcohol ) and Hydroxypropyl Cellulose Blends. Natural Science, 4, 57-67.
https://doi.org/10.4236/ns.2012.41009

[12]   Nasar, G., Khan, M.S. and Khalil, U. (2009) Structural Study of PVA Composites with Inorganic Salts by X-Ray Diffraction. Journal of Pakistan Materials Society, 3, 67-70.

[13]   Assendert, H.E. and Windle, A.H. (1998) Crystallinity in Poly(vinyl alcohol ). 1. An X-Ray Diffraction Study of Atactic PVOH. Polymer (Guildf), 39, 4295-4302.
https://doi.org/10.1016/S0032-3861(97)10296-8

[14]   Hemalatha, K.S., Rukmani, K., Suriyamurthy, N. and Nagabhushana, B.M. (2014) Synthesis, Characterization and Optical Properties of Hybrid PVA-ZnO Nanocomposite: A Composition Dependent Study. Materials Research Bulletin, 51, 438-446.
https://doi.org/10.1016/j.materresbull.2013.12.055

[15]   Costa, R.G.F., Ribeiro, C. and Mattoso, L.H.C. (2010) Morphological and Photocatalytic Properties of PVA/TiO2 Nanocomposite Fibers Produced by Electrospinning. Journal of Nanoscience and Nanotechnology, 10, 5144-5152.
https://doi.org/10.1166/jnn.2010.2405

[16]   Mansour, A.F., Mansour, S.F. and Abdo, M.A. (2015) Improvement Structural and Optical Properties of ZnO/PVA Nanocomposites. IOSR Journal of Applied Physics, 7, 60-69.

[17]   Ahmad, J., Deshmukh, K. and Habib, M. (2014) Influence of TiO2 Nanoparticles on the Morphological, Thermal and Solution Properties of PVA/TiO2 Nanocomposite Membranes. Arabian Journal for Science and Engineering, 39, 6805-6814.

[18]   Holland, B.J. and Hay, J.N. (2001) The Thermal Degradation of Poly (vinyl alcohol). Polymer (Guildf), 42, 6775-6783.
https://doi.org/10.1016/S0032-3861(01)00166-5

[19]   Radoicic, M.B., Saponjic, Z.V., Marinovic-Cincovic, M.T., Ahrenkiel, S.P., Bibic, N.M. and Nedeljkovic, J.M. (2012) The Influence of Shaped TiO2 Nanofillers on the Thermal Properties of Poly (vinyl alcohol). Journal of the Serbian Chemical Society, 77, 699-714.
https://doi.org/10.2298/JSC110331161R

[20]   Gong, X., Yin, C., Pan, L., Hao, Z. and Pong, C. (2014) Composites: Part B Characterization of Poly (vinyl alcohol) (PVA)/ZnO Nanocomposites Prepared by a One-Pot Method. Composites Part B, 60, 144-149.
https://doi.org/10.1016/j.compositesb.2013.12.045

[21]   Mohanapriya, S., Mumjitha, M., Purnasai, K. and Raj, V. (2016) Fabrication and Characterization of Poly (vinyl alcohol)-TiO2 Nanocomposite Films for Orthopedic Applications. Journal of the Mechanical Behavior of Biomedical Materials, 63, 141-156.

[22]   Yang, C.-C. and Lin, C.-T. (2008) Preparation of the PVA/TiO2 Nanocomposite Polymer Menbranes by a Sol-Gel Process for Alkaline DMFC. ECS Transactions, 6, 17-44.
https://doi.org/10.1149/1.2927185

[23]   Marras, S.I., Kladi, K.P., Tsivintzelis, I., Zuburtikudis, I. and Panayiotou, C. (2008) Biodegradable Polymer Nanocomposites: The Role of Nanoclays on the Thermomechanical Characteristics and the Electrospun Fibrous Structure. Acta Biomaterialia, 4, 756-765.
https://doi.org/10.1016/j.actbio.2007.12.005

[24]   Zanetti, M., Sergei, L. and Camino, G. (2000) Polymer Layered Silicate Nanocomposites. Macromolecular Materials and Engineering, 279, 1-9.
https://doi.org/10.1002/1439-2054(20000601)279:1<1::AID-MAME1>3.0.CO;2-Q

[25]   Silva, M.B.R., Tavares, M.I.B., Junior, A.W.M. and Neto, R.P.C. (2016) Evaluation of Intermolecular Interactions in the PHB/ZnO Nanostructured Materials. Journal of Nanoscience and Nanotechnology, 16, 7606-7610.

[26]   Soares, I.L., Chimanowsky, J.P., Luetkmeyer, L., Oliveira, E., De Holanda, D., Souza, S., Inês, M. and Tavares, B. (2015) Evaluation of the Influence of Modified TiO2 Particles on Polypropylene Composites. Journal of Nanoscience and Nanotechnology, 15, 5723-5732.
https://doi.org/10.1166/jnn.2015.10041

 
 
Top