Conditional Diagnosability of the Locally Twisted Cubes under the PMC Model

References

[1] G. M. F. P. Preparata and R. T. Chien, “On the Connection Assignment Problem of Diagnosable Systems,” IEEE Transactions on Electronic Computers, Vol. EC-16, No. 6, December 1967, pp. 848-854.
doi:10.1109/PGEC.1967.264748

[2]
M. M. J. Maeng, “A Comparison Connection Assignment for Self-Diagnosis of Multiprocessors Systems,” Proceedings of the 11th International Symposium on Fault-Tolerant Computing, Portland, 1981, pp. 173-175.

[3]
F. G. F. Barsi and P. Maestrini, “A Theory of Diagnosability of Digital Systems,” IEEE Transactions on Computers, Vol. C-25, No. 6, June 1976, pp. 585-593.
doi:10.1109/TC.1976.1674658

[4]
R. Ahlswede and H. Aydinian, “On Diagnosability of Large Multiprocessor Networks,” Discrete Applied Mathematics, Vol. 156, No. 18, 2008, pp. 3464-3474.
doi:10.1016/j.dam.2008.02.001

[5]
D. Wang, “Diagnosability of Enhanced Hypercubes,” IEEE Transactions on Computers, Vol. 43, No. 9, 1994, pp. 1054-1061. doi:10.1109/12.312114

[6]
J. Fan, “Diagnosability of the Mobius Cubes,” IEEE Transactions on Parallel and Distributed Systems, Vol. 9, No. 9, 1998, pp. 923-928. doi:10.1109/71.722224

[7]
P.-L. Lai, J. Tan, C.-P. Chang and L.-H. Hsu, “Conditional Diagnosability Measures for Large Multiprocessor Systems,” IEEE Transactions on Computers, Vol. 54, No. 2, 2005, pp. 165-175. doi:10.1109/TC.2005.19

[8]
S. Hsieh and C. Lee, “Diagnosability of Two-Matching Composition Networks under the MM* Model,” IEEE Transactions on Dependable and Secure Computing, Vol. 8, No. 2, 2009, pp. 246-255.

[9]
Q. Zhu, S.-Y. Liu and M. Xu, “On Conditional Diagnosability of the Folded Hypercubes,” Information Sciences, Vol. 178, No. 4, 2008, pp. 1069-1077.
doi:10.1016/j.ins.2007.09.005

[10]
M. Xu, K. Thulasiraman and X.-D. Hu, “Conditional Diagnosability of Matching Composition Networks under the Pmc Model,” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 56, No. 11, 2009, pp. 875-879. doi:10.1109/TCSII.2009.2030361

[11]
Q. Zhu, “On Conditional Diagnosability and Reliability of the bc Networks,” The Journal of Supercomputing, Vol. 45, No. 2, 2008, pp. 173-184.
doi:10.1007/s11227-007-0167-8

[12]
S.-M. Zhou, “The Conditional Diagnosability of Locally Twisted Cubes,” Proceedings of the 4th International Conference on Computer Science and Education, 2009, pp. 221-226.

[13]
J. A. Bondy and U. S. R. Murty, “Graph Theory with Applications,” North Holland, New York, 1976.

[14]
X.-F. Yang, D. J. Evans and G. M. Megson, “The Locally Twisted Cubes,” International Journal of Computer Mathematics, Vol. 82, No. 4, April 2005, pp. 401-413.
doi:10.1080/0020716042000301752

[15]
G. M. A. T. Dahbura, “An O(n^{2.5}) Fault Identification Algorithm for Diagnosable Systems,” IEEE Transactions on Computers, Vol. C-33, No. 6, 1984, pp. 486-492.
doi:10.1109/TC.1984.1676472

[16]
A. T. Dahbura and G. M. Masson, “An O(n^{2.5}) Fault Identification Algorithm for Diagnosable Systems,” IEEE Transactions on Computers, Vol. 33, No. 6, 1984, pp. 486-492.
doi:10.1109/TC.1984.1676472

[17]
J.-X. Fan, S.-K. Zhang, et al., “The Restricted Connectivity of Locally Twisted Cubes,” 2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks (ISPAN), Kaohsiung, 14-16 December 2009, pp. 574-578. doi:10.1109/I-SPAN.2009.48

[18]
J. Fan and X. Lin, “The t/k-Diagnosability of the BC Graphs,” IEEE Transactions on Computers, Vol. 54, No. 2, 2005, pp. 176-184. doi:10.1109/TC.2005.33

[19]
X.-F. Yang, J.-Q. Cao, G. M. Megson and J. Luo, “Minimum Neighborhood in a Generalized Cube,” Information Processing Letters, Vol. 97, 2006, pp. 88-93.