Back
 OJE  Vol.1 No.3 , November 2011
A law of nature?
Abstract: Is there an overriding principle of nature, hitherto overlooked, that governs all population behavior? A single principle that drives all the regimes observed in nature exponential-like growth, saturated growth, population decline, population extinction, oscillatory behavior? In current orthodox population theory, this diverse range of population behaviors is described by many different equations each with its own specific justification. The signature of an overriding principle would be a differential equation which, in a single statement, embraces all the panoply of regimes. A candidate such governing equation is proposed. The principle from which the equation is derived is this: The effect on the environment of a population’s success is to alter that environment in a way that opposes the success.
Cite this paper: Chester, M. (2011) A law of nature?. Open Journal of Ecology, 1, 77-84. doi: 10.4236/oje.2011.13011.
References

[1]   Murray, B.G., Jr. (2000) Universal laws and predictive theory in ecology and evolution. Oikos, 89, 403-408. doi:10.1034/j.1600-0706.2000.890223.x

[2]   Murray Jr., B.G. (2001) Are ecological and evolutionary theories scientific? Biological Reviews, 76, 255-289. doi:10.1017/S146479310100567X

[3]   Turchin, P. (2001) Does population ecology have general laws? Oikos, 94, 17-26. doi:10.1034/j.1600-0706.2001.11310.x

[4]   Ginzburg, L.R. and Colyvan, M. (2004) Ecological orbits. Oxford University Press, Oxford.

[5]   Lange, M. (2005) Ecological laws: What would they be and why would they matter? Oikos, 110, 394-403. doi:10.1111/j.0030-1299.2005.14110.x

[6]   Gorelick, R. (2011) What is theory? Ideas in Ecology and Evolution, 4, 1-10.

[7]   Colyvan, M. and Ginzburg, L.R. (2010) Analogical thin- king in ecology: Looking beyond disciplinary boundaries. The Quarterly Review of Biology, 85, 1-12. doi:10.1086/652321

[8]   Egler, F.E. (1986) Physics envy in ecology. Bulletin of the Ecology Society of America, 67, 233-235.

[9]   O’Hara, R.B. (2005) The anarchist’s guide to ecological theory. Or, we don’t need no stinkin’ laws. Oikos, 110, 390-393.

[10]   Berryman, A. (2003) On principles, laws and theory in po- pulation ecology. Oikos, 103, 695-701. doi:10.1034/j.1600-0706.2003.12810.x

[11]   Lockwood, D.R. (2008) When logic fails ecology. Quaterly Review of Biology, 83, 57-64. doi:10.1086/529563

[12]   Holt, R.D., (2009) Darwin, malthus and movement: A hidden assumption in the demographic foundations of evolution. Israel Journal of Ecology and Evolution, 55, 189-198. doi:10.1560/IJEE.55.3.189

[13]   Lotka, A.J. (1956) Elements of mathematical biology. Dover, New York.

[14]   Volterra, V. (1926) Fluctuations in the abundance of a species considered mathematically. Nature, 118, 558-560 doi:10.1038/118558a0

[15]   Murray, J.D. (1989) Mathematical biology. Springer-Ver- lag, Berlin.

[16]   Vainstein, J.H., Rube, J.M. and Vilar, J.M.G. (2007) Sto- chastic population dynamics in turbulent fields. Euro- pean Physical Journal Special Topics, 146, 177-187. doi:10.1140/epjst/e2007-00178-7

[17]   Ginzburg, L.R. (1972) The analogies of the “free motion” and “force” concepts in population theory (in Russian). In: Ratner, V.A. Ed., Studies on theoretical genetics, Aca- demy of Sciences of the USSR, Novosibirsk, 65-85.

[18]   Ginzburg, L.R. (1986) The theory of population dynamo- ics: I. Back to first principles. Journal of Theoretical Bi- ology 122, 385-399. doi:10.1016/S0022-5193(86)80180-1

[19]   Ginzburg, L.R. (1992) Evolutionary consequences of ba- sic growth equations. Trends in Ecology and Evolution, 7, 133. doi:10.1016/0169-5347(92)90149-6

[20]   Ginzburg, L.R. and Taneyhill, D. (1995) Higher growth rate implies shorter cycle, whatever the cause: A reply to Berryman. Journal of Animal Ecology, 64, 294-295. doi:10.2307/5764

[21]   Ginzburg, L.R. and Inchausti, P. (1997) Asymmetry of po- pulation cycles: Abundance-growth representation of hid- den causes of ecological dynamics. Oikos, 80, 435-447. doi:10.2307/3546616

[22]   Britton, N.F., (2003) Essential mathematical biology. Sprin- ger, London.

[23]   Turchin, P. (2003) Complex population dynamics: A theo- retical/empirical synthesis. Princeton University Press, Prin- ceton.

[24]   Vandemeer, J., (1981) Elementary mathematical ecology. John Wiley and Sons, New York.

[25]   Nowak, M.A. (2006) Evolutionary dynamics: Exploring the equations of life. Harvard Press, Cambridge.

[26]   Torres, J.-L., Pérez-Maqueo, O., Equihua, M. and Torres, L. (2009) Quantitative assessment of organism-environ- ment couplings. Biology and Philosophy, 24, 107-117. doi:10.1007/s10539-008-9119-9

[27]   Jones, J.M. (1976) The r-K-Selection Continuum. The Ame- rican Naturalist, 110, 320-323. doi:10.1086/283069

[28]   Ruokolainen, L., Lindéna, A., Kaitalaa, V. and Fowler, M.S. (2009) Ecological and evolutionary dynamics under coloured environmental variation. Trends in Ecology and Evolution, 24, 555-563. doi:10.1016/j.tree.2009.04.009

[29]   Okada, H., Harada, H., Tsukiboshi, T. and Araki, M. (2005) Characteristics of Tylencholaimus parvus (Nematoda: Dorylaimida) as a fungivorus nematode. Nematology, 7, 843-849. doi:10.1163/156854105776186424

[30]   Ma, Z.S. (2010). Did we miss some evidence of chaos in laboratory insect populations? Population Ecology, 53, 405-412. doi:10.1007/s10144-010-0232-7

[31]   Carroll, S.B. (2006) The Making of the fittest. W.W. Nor- ton, New York.

[32]   Verhulst, P.-F., (1838) Notice sur la loi que la population poursuit dans son accroissement. Correspondance Mathé- matique et Physique, 10, 113-121.

[33]   Parry, G.D. (1981) The meanings of r- and K-selection. Oecologia, 48, 260-264. doi:10.1007/BF00347974

[34]   Kuno, E. (1991) Some strange properties of the logistic equation defined with r and K—inherent defects or artifacts. Researches on Population Ecology, 33, 33-39. doi:10.1007/BF02514572

[35]   Gilbert, S.F. and Epel, D. (2009) Ecological developmen- tal biology. Sinauer, Sunderland.

[36]   Jablonka, E. and Raz, G. (2009) Transgenerational epige- netic inheritance: Prevalence, mechanisms and implica- tions for the study of heredity and evolution. Quarterly Review of Biology, 84, 131-176. doi:10.1086/598822

[37]   Clutton-Brock, T.H. (Ed.) (1990) Reproductive success: Studies of individual variation in contrasting breeding systems. University of Chicago Press, Chicago.

[38]   Coulson, T., Benton, T.G., Lundberg, P., Dall, S.R.X., Kendall, B.E. and Gaillard, J.-M. (2006) Estimating in- dividual contributions to population growth: Evolution- ary fitness in ecological time. Proceedings of the Royal Society B, 273, 547-555. doi:10.1098/rspb.2005.3357

[39]   Owen-Smith, N. (2005) Incorporating fundamental laws of biology and physics into population ecology: The me- taphysiological approach. Oikos, 111, 611-615. doi:10.1111/j.1600-0706.2005.14603.x

[40]   Owen-Smith, R.N. (2002) Adaptive herbivore ecology. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511525605

[41]   Pelletier, F., Garant, D. and Hendry, A.P. (2009) Eco-evo- lutionary dynamics. Phililosophical Transactions Royal Society B, 364, 1483-1489. doi:10.1098/rstb.2009.0027

[42]   McNamara, J.M. and Houston, A.I. (2009) Integrating fun- ction and mechanism. Trends in Ecology and Evolution, 24, 670-675. doi:10.1016/j.tree.2009.05.011

[43]   Spencer, C.L. and Lensink, C.J. (1970) The muskox of Nu- nivak Island, Alaska. The Journal of Wildlife Management, 34, 1-15. doi:10.2307/3799485

[44]   Turchin, P., Wood, S.N., Ellner, S.P., Kendall, B.E., Mur- doch, W.W., Fischlin, A., Casas, J., McCauley, E. and Bri- ggs, C.J. (2003) Dynamical effects of plant quality and parasitism on population cycles of larch budmoth. Ecol- ogy, 84, 1207-1214. doi:10.1890/0012-9658(2003)084%5B1207:DEOPQA%5D2.0.CO;2

[45]   Kuussaari, M., Bommarco, R., Heikkinen, R.K., Helm, A., Krauss, J., Lindborg, R., ?ckinger, E., P?rtel, M., Pi- no, J., Rodà, F., Stefanescu, C., Teder, T., Zobel, M. and Ingolf, S.-D.I. (2009) Extinction debt: A challenge for biodiversity conservation. Trends in Ecology and Evolution, 24, 564-571. doi:10.1016/j.tree.2009.04.011

[46]   Blount, Z.D., Boreland, C.Z. and Lenski, R.E. (2008) His- torical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proceedings of the National Academy of Science, 105, 7899- 7906. doi:10.1073/pnas.0803151105

 
 
Top