[1] Gonzalez-Acosta, B., Bashan, Y., Hernandez-Saavedra, N.Y., Ascenaio, F. and Cruz-Aguero, G. (2006) Seasonal seawater temperature as the major determinant for populations of culturable bacteria in the sediments of an intact mangrove in an arid region. FEMS Microbiology Ecology, 55, 311-321. doi:10.1111/j.1574-6941.2005.00019.x
[2] Alongi, D.M., Boto, K.G. and Tirendi, F. (1989) Effect of exported mangrove litter on bacterial productivity and dissolved organic carbon fluxes in adjacent tropical nearshore sediments. Marine Ecology Progress Series, 56, 133-144. doi:10.3354/meps056133
[3] Alongi, D.M., Christofferson, P. and Tirendi, F. (1993) The influence of forest type on microbial-nutrient relationship in tropical mangrove sediment. Journal of Experimental Marine Biology and Ecology, 171, 201-223. doi:10.1016/0022-0981(93)90004-8
[4] Alongi, D.M. (1994) The role of bacteria in nutrient recycling in tropical mangrove and other coastal benthic ecosystems. Hydrobiologia, 285, 19-32. doi:10.1007/BF00005650
[5] Holguin, G., Bashan, Y. and Vazavez, P. (2001) The role of sediment microorganism in the productivity, conservation and rehabilitation of mangrove ecosystem: An Overview. Biology of Fertile Soils, 33, 265-278. doi:10.1007/s003740000319
[6] Vazquez, P., Holguin, G., Puente, M.E., Lopez-Cortes, A. and Bashan, Y. (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils, 30, 460-468. doi:10.1007/s003740050024
[7] Rojas, A., Holguin, G., Glick, B.R. and Bashan, Y. (2001) Synergism between Phyllobacterium sp. (N2-fixer) and Bacillus licheniformis (P-solubilizer), both from a semiarid mangrove rhizosphere. FEMS Microbiology Ecology, 35, 181-187. doi:10.1111/j.1574-6941.2001.tb00802.x
[8] Teri, C.B. and Mary, K.F. (2005) Linking microbial community composition and soil processes in a California annual grassland and mixed conifer forest. Biogeochemistry, 73, 395-415. doi:10.1111/j.1574-6941.2001.tb00802.x
[9] Riley, R.H., Peter, M. and Vitousek, P.M. (1995) Nutrient dynamics and nitrogen trace gas flux during ecosystem development in montane rain forest. Ecology, 76, 292- 304. doi:10.2307/1940650
[10] Wlodarczyk, T., (2000) N2O emission and absorption against a background of CO2 in Eutric Cambisol under different oxidation-reduction conditions. Acta Agrophysi- ca, 28, 39-43.
[11] Pascual, J.A., Hernandez, T., Garcia, C. and Ayuso, M. (1998) Enzymatic activities in an arid soil amended with urban organic wastes: Laboratory experiment. Bioresour- ce Technology, 64, 131-138. doi:10.1016/S0960-8524(97)00171-5
[12] Ramanathan, A.L., Singh, G., Majumder, J., Samal, A.C., Chowhan, R., Rayan, R.K., Roykumar, K. and Santra, S.C. (2008) A study of microbial diversity and its interaction with nutrients in the sediments of Sundarban mangroves. Indian Journal of Marine Science, 37, 159-165.
[13] Das, J. and Dangar, T.K. (2008) Microbial population dynamics, especially stress tolerant Bacillus thuringiensis, in partially anaerobic rice field soils during postharvest period of the Himalayan, island, brackish water and co- astal habitats of India. World Journal of Microbiology and Biotechnology, 24, 1403-1410.
[14] Sahrani, F.K., Ibrahim, Z., Yahya, A. & Aziz, M. (2008) Isolation and Identification of Marine Sulfate Reducing Bacteria Desulfovibrio sp and Citrobacter freundii from Pasir Gudang, Malaysia. Sains Malyasiana, 37, 365-371.
[15] Grasshoff, K., Ehrhardt, M. and Kremling, K. (1983) Standard method for sea water analysis. 2nd Edition, Wiley-VCH, Weinheim.
[16] Mussa, S.A.B., Elferjani, H.S., Haroun, F.A. and Abdelnabi, F.F. (2009) Determination of available nitrate, pho- sphate and sulfate in soil samples. International Journal of PharmTech Research, 1, pp 598-604.
[17] Tiwari, S.C., Tiwari, B.K. and Mishra, R.R (1989) Microbial community, enzyme activity and CO2 evolution in Pineapple Orchard soil. Tropical Ecology, 30, 265-273.
[18] Richards, L.A. (Ed.) (1968) Diagnosis and improvement of Saline and Alkali soils. Oxford and IBH Publishing Co., New Delhi, 160.
[19] Walkley, A. and Black, I.A. (1934) An examination of Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38. doi:10.1097/00010694-193401000-00003
[20] Pidello, A., Monrozier, L.J. (2006) Inoculation of the redox effector Pseudomonas fluorescens C7R12 strain affects soil redox status at the aggregate scale. Soil Biology & Biochemistry, 38, 1396-1402. doi:10.1016/j.soilbio.2005.10.010
[21] Mersi, W. and Schinner, F. (1991) An improved and accurate method for determiningthe dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biology and Fertility of Soils, 11, 216-220. doi:10.1007/BF00335770
[22] Knight, T.R. and Dick, R.P. (2004) Differentiating micro- bial and stabilized b-glucosidase activity relative to soil quality. Soil Biology & Biochemistry, 36, 2089-2096. doi:10.1016/j.soilbio.2004.06.007
[23] Wahid, S.M., Babel, M.S. and Bhuiyan, A.R. (2007) Hy- drologic monitoring and analysis in the Sundarbans mangrove ecosystem, Bangladesh. Journal of Hydrology, 332, 381-395. doi:10.1016/j.jhydrol.2006.07.016
[24] Kirchman, D.L and Rich, J.H. (1997) Regulation of Ba- cterial Growth Rates by Dissolved Organic Carbon and Temperature in the Equatorial Pacific Ocean. Microbial Ecology, 33, 11-20.
[25] Ward, B.B. (1996) Nitrification and denitrification: Pro- bing the nitrogen cycle in aquatic environments. Microbial Ecology, 32, 247-261. doi:10.1007/BF00183061
[26] Niemi, R.M., Veps?l?inen, M., Wallenius, K., Simpanen, S., Alakukku, L. and Pietola, L. (2005) Temporal and soil depth-related variation in soil enzyme activities and in root growth of red clover (Trifolium pratense) and timothy (Phleum pratense) in the field. Applied Soil Ecology, 30, 113-125. doi:10.1016/j.apsoil.2005.02.003
[27] Ghosh, A., Dey, N., Bera, A., Tiwari, A., Sathyniranjan, K.B., Chakrabarti, K. and Chattopadhyay, D. (2010) Cul- ture independent molecular analysis of bacterial communities in the mangrove sediment of Sunderban, India. Saline Systems, 6, 1-11. doi:10.1186/1746-1448-6-1
[28] Tiwari, S.C., Tiwari, B.K. and Mishra, R.R. (1986) Temporal and depth-wise variations in CO2 evolution and mi- crobial population in pineapple plantation soil. Journal of Soil Biology and Ecology, 6, 67-76.
[29] Tiwari, S.C., Tiwari, B.K. and Mishra, R.R. (1987) The influence of moisture regimes on the population of activity of soil microorganisms. Plant and Soil, 101, 133-136. doi:10.1007/BF02371041
[30] Tiwari, S.C., Tiwari, B.K. and Mishra, R.R. (1987) Temporal and depth-wise variations in dehydrogenase and urease activities and bacterial population in pineapple plantation soils. Proceedings of Indian National science Academy Part B, 53, 173-176.
[31] Ashokkumar, S., Rajaram, G., Manivasagan, P., Ramesh, S., Sampathkumar, P. and Mayavu, P. (2010) Studies on hydrographical parameters, nutrients and microbial popu- lations of mullipallam creek in muthupettai mangroves (southeast coast of India). Research Journal of Microbiology, 6, 71-86.
[32] Hakansson, T., Suer, P., Mattiasson, B. and Allard, B. (2008) Sulphate reducing bacteria to precipitate mercury after electrokinetic soil remediation. International Journal of Environmental Science and Technology, 5, 267- 274.