Back
 GEP  Vol.6 No.3 , March 2018
Biodiversity of Duckweeds in Eastern China and Their Potential for Bioremediation of Municipal and Industrial Wastewater
Abstract:
Duckweed is a group of aquatic plants with the potential of wastewater remediation and fast accumulation of biomass. The accumulated biomass, rich in cellulose, starch and protein, can be used for biofuel, bio-fertilizer, animal feed and human food. Characterization of natural biodiversity of duckweed species is essential for the germplasm preservation and various practical applications. We have collected samples of duckweed in eastern China and characterized species biodiversity by genotyping, using chloroplast (atpF-atpH and psbK-psbI spacers). Spirodela polyrhiza was revealed as a clear dominant duckweed species in all locations of the area. Other duckweed species were identified as Landoltia punctata, Lemna aequinoctialis and Lemna turionifera. Selected isolates of these four species were used in the experiments to estimate their potential in removing nitrogen and phosphorus nutrients from municipal and industrial wastewater sampled at the local sewage plants. Duckweed was able to reduce the concentration of nitrogen up to 98% and phosphorus up to 96%. The presented data demonstrates high efficiency of the local duckweed isolates for bioremediation of different types of wastewater and the great potential of duckweed for wastewater treatment when incorporated into the purification chain.
Cite this paper: Zhou, Y. , Chen, G. , Peterson, A. , Zha, X. , Cheng, J. , Li, S. , Cui, D. , Zhu, H. , Kishchenko, O. and Borisjuk, N. (2018) Biodiversity of Duckweeds in Eastern China and Their Potential for Bioremediation of Municipal and Industrial Wastewater. Journal of Geoscience and Environment Protection, 6, 108-116. doi: 10.4236/gep.2018.63010.
References

[1]   Priya, A., Avishek, K. and Pathak, G. (2001) Assessing the Potentials of Lemna Minor in the Treatment of Domestic Wastewater at Pilot scale. Environmental Monitoring and Assessment, 184, 4301-4307. https://doi.org/10.1007/s10661-011-2265-6

[2]   Srivastava, J., Gupta, A. and Chandra, H. (2008) Managing Water Quality with Aquatic Macrophytes. Revised Environmental Science Biotechnology, 7, 255-266. https://doi.org/10.1007/s11157-008-9135-x

[3]   Cao, L. and Wang, W. (2010) Wastewater Management in Freshwater Pond Aquaculture in China. In: Sumi, A., Fukushi, K., Honda, R. and Hassan, K.M., Eds., Sustainability in Food and Water: An Asian Perspective, 181-190.

[4]   He, F. and Wu, Z. (2003) Application of Aquatic Plants in Sewage Treatment and Water Quality Improvement. Chinese Bull. Botany, 6, 641-647 [in Chinese].

[5]   Conley, D.J., Paerl, H.W., Howarth, R.W., et al. (2009) Controlling Eutrophication by Reducing Both Nitrogen and Phosphorus. Science, 323, 1015-1016.

[6]   Dhote, S. and Dixit, S. (2009) Water Quality Improvement through Macrophytes—A Review. Environmental Monitoring and Assessment, 152, 149-153. https://doi.org/10.1007/s10661-008-0303-9

[7]   Xu, J. and Shen, G. (2011) Growing Duckweed in Swine Wastewater for Nutrient Recovery and Biomass Production. Bioresource Technology, 102, 848-853. https://doi.org/10.1016/j.biortech.2010.09.003

[8]   Mkandawire, M. and Dudel, E.G. (2007) Are Lemna spp. Effective Phytoremediation agents? Bioremediation, Biodiversity and Bioavailability, 1, 56-71.

[9]   Appenroth, K.J., Sree, K.S., Böhm, V., Hammann, S., Vetter, W., Leiterer, M. and Jahreis, G. (2017) Nutritional Value of Duckweeds (Lemnaceae) as Human Food. Food Chemistry, 217, 266-273. https://doi.org/10.1016/j.foodchem.2016.08.116

[10]   Soda, S., Ohchi, T., Piradee, J., Takai, Y. and Ike, M. (2015) Duckweed Biomass as a Renewable Biorefinery Feedstock: Ethanol and Succinate Production from Wolffia globose. Biomass Bioenergy, 813, 364-368. https://doi.org/10.1016/j.biombioe.2015.07.020

[11]   Chen, M., Liu, Z. and Bian, Z. (2002) Wastewater Purifying Technology of Intensive aquiculture Greenhouse: A Case Study on an Automatically Controlled Ecological Greenhouse. Agro-Engineering Transaction, 18, 95-97. [in Chinese]

[12]   Borisjuk, N., Chu, P., Gutierrez, R., Zhang, H., Acosta, K., Friesen, N., Sree, S.K., Garcia, C., Appenroth, K.J. and Eric, L. (2015) Assessment, Validation and Deployment Strategy of A Two-Barcode Protocol for Facile Genotyping of Duckweed Species. Plant Biology, 1, 42-49. https://doi.org/10.1111/plb.12229

[13]   Schenk, R.U. and Hildebrandt, A.C. (1972) Medium and Techniques for Induction and Growth of Monocotyledonous and Dicotyledonous Plant Cell Cultures. Canadian Journal of Botany, 50, 199-204. https://doi.org/10.1139/b72-026

[14]   Appenroth, K.J., Borisjuk, N. and Lam, E. (2013) Telling Duckweed Apart: Genotyping Technologies for the Lemnaceae. Chinese Journal of Applied and Environmental Biology, 19, 1-10. https://doi.org/10.3724/SP.J.1145.2013.00001

[15]   Ziegler, P., Sree, S. and Appenroth, K. (2016) Duckweeds for Water Remediation and Toxicity Testing. Toxicological & Environmental Chemistry, 98, 1127-1154. https://doi.org/10.1080/02772248.2015.1094701

 
 
Top